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ERRATA.

Page 89. “Initial pressure” should be “ nett initial pressure.”

, Ol «yTgH,is 53" ought to be « 4/ 2gH, is = gg_g = 65

» 92. For the sentence beginning, “The corresponding value,” and ending
5,100 cubic feet,” substitute “If ¢ = *84, the theoretical dis-
charge would be 5,100 cubic feet, and the theoretical value of

65 x 4/ "84

et == .69.”
W7

the ratio of best speed would be =

any interval by the height through which 1t falls, the umits of
time, weight, and space generally adopted being a second, a
pound, and a foot respectively. Professor Rankine in his work
on “ Prime Movers " uses the word energy to express the same thing.
Neither according to its strictly etymological, nor any acknow-
ledged derivative meaning, can the word energy be rightly used
to express the idea. It is more nearly synonymous with efficiency.
Perhaps the difference between the two, and the reasons for pre-
ferring the word “power” cannot be better illustrated than by
B2






PRINCIPLES OF CONSTRUCTION

AND

EFFICIENCY OF WATER-WHEELS.

INTRODUCTION.

THE use of water as a motive power has been so well known from
the earliest ages of which we have any record, and the best mode
of its application has formed the subject of so many- scientific.
treatises, that the Author feels he cannot advance any new views,
or establish any new rules of construction of the more ancient
forms of wheels. Modern inventions for utilising the impulsive
power of water, such as turbines, do not seem, however, to have
been thoroughly investigated; at least, the Author has not been
able to meet with any treatise, in which detailed rules of con-
struction have been given; or if detailed rules of construction
have been given, no scientific reason has been laid down for their
adoption.

Part I. is devoted to the investigation of the effect of the im-
pulse of water against vanes, the general principles of construction,

and the efficiency of the different classes of vertical wheels.

" Part IL treats of the efficiency, principles, and details of con-
struction of the working parts of the three classes of turbines—
outward, inward, and parallel flow.

Smeaton and the older writers on this subject use the word
power to express the product of the weight of water falling during
any interval by the height through which it falls, the units of
time, weight, and space generally adopted being a second, a
pound, and a foot respectively Professor Rankine in his work
on “ Prime Movers ” uses the word energy to express the same thing.
Neither according to its strictly etymological, nor any acknow-
ledged derivative meaning, can the word energy be rightly used
to express the idea. It is more nearly synonymous with efficiency.
Perhaps the difference between the two, and the reasons for pre-
ferring the word “power” cannot be better illustrated than by

B2
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saying, you may be powerful without being energetic, and energetic
without being. powerful.

To utilise this power, water-wheels of different kinds have been
invented. They may all, however, be divided into two classes.

(1.) Those which are driven partly by the statical weight of
the water acting through a portion of the whole fall, partly by
the momentum acquired by the water before it strikes the wheel.

(2.) Those which are driven by momentum acquired by the
water only. .

Wheels of the first class are designated * weight and impulse,”.
" those of the second *“impulse” wheels.

The power which the wheel is capable of transmitting to the
machinery is called by Smeaton the effective power of the wheel.
This, owing to the friction of the bearings and other resistances,
and the impossibility of utilising the whole power of the fall,
whether it acts partly by weight, partly by impulse, or wholly by
impulse, is always less than the gross power of the fall. The
ratio, effective power < gross power of fall, is called the co-efficient
of efficiency of the wheel.

The efficiency can only be determined by actual experiment.
Co-efficients determined by calculations, based upon assumptions
which, although more nearly true in some cases than in others,
never exactly represent the actual state of the case, are never
sufficiently near the truth to determine the absolute power of any
wheel, even when this is considered apart from the efficiency lost
by friction of the bearing surfaces or by contact with external
resistances, such as the tail water in a vertical wheel race, or the
water surrounding a submerged horizontal wheel.

Such co-efficients will, however, enable us to compare with suffi-
cient exactness the relative efficiency of different wheels, and of
the same wheel under different circumstances, and the theoretical
investigation into their value will show us how to determine the
form of the wheel of each class, which will, in practice, develop
the highest efficiency. '

The co-efficient of efficiency of turbines is usually stated to be
equal to that of high breast wheels, viz., about -75. The investi-
gations of the Author have led him to the conclusion that this
efficiency cannot much exceed 5. The argument of those who
uphold the higher co-efficient is simply this. The power lost by
the water must have been communicated by the machine; if not,
what has become of it? If such an argument be applicable to the
case of one hydraulic machine, it must be applicable to all. Thus
the water in the tail race of an undershot wheel with flat vanes

’
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moving at its best velocity, moves with only half the original
velocity. Seventy-five per cent. of the original power of the current
has been lost, therefore *75 is the co-efficient of efficiency of under-
shot wheels.

PART 1.
IMPULSIVE ACTION OF WATER AND VERTICAL WATER-WHEELS.

The simplest case of the impulsive action of water is that of a
flat vane immersed in a stream at right angles to its direction.
The following investigation of the effective power exerted by the
stream on such a vane is given in Mosely’s * Hydrostatics.”

-Let the curve A P Q R represent the direction of the motion of
the stream between the points A and R. Let us consider the

Fic. l'.
R

A

motion of a small cylindrical element of the fluid P Q. Let K be
the area of either end of the cylinder, 8 the distance of P from A
and P Q=28 Since the pressure may vary from A to R, but is
always of the same value at the same distance from A, if p be the
pressure at P, the pressure at Q will be p 4 8. Let S be the
accelerating force on the end P, p the density of the liquid, then
the moving force on the element P Q will manifestly be
KpdsS8—-Kdp;

if, therefore, v be the veloclty of the point P, the equation of motion -
of the point P, when 8 is indefinitely diminished, will be

Jd0_g_ldp
ds " pde
whence
3o? =dea—% (A),
we may apply equation (A) in the two following ways for deter-
mining the moving force of the water on the vane.
*(1.) Let the vane be stationary.
Let p' be the pressure in front of the vane after immersion;
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since the motion of the water in direction A P Q R is wholly
destroyed, we have '
0= de PRy A
[

and therefore K (p'— p) the moving force exerted on the vane is
equal to ”
3 = —
1Kpv*=Kgp 5 7’
or the moving force is equal to the weight of a column of water
whose height is equal to that due to the velocity of the current
and base equal to the area immersed.

(2.) Let the immersed vane have a velocity u.
The effort of the stream on the vane may be viewed in two lights.

(a.) Since the moving force on the vane when stationary is
equal to the weight of a column of water whose height is equal
to that due to the velocity of the current, we might infer that
when the vane is in motion the moving force would be equal to
the weight of a column of water whose height is equal to that
due to the difference between the velocities of the water and the
vane, or to

— 2
Kgp C 3 gu) )
in which case effective power exerted per second would be
v—u)u
. ‘ K g P; '(_29)_9
from which we get these theoretical values of the ratios.
Best velocity of vane _ 1 - .34
Velocity of current 3
Movmg force at best veloclty 4 o 45
Movmg force when statlonary 9
Effective power N T
Gross power 27
Effective power 1
Power lost = =7

the gross power being equal to the product of the weight of
water passing in one second, viz.: K g p v multiplied by the height
due to the velocity of the stream, and the power lost to the
product of the same weight of water multiplied by the dif-
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ference between the heights due to the initial and final velocity,

. 89?2
viz.: —.

g

(b.) Referring to equation (A), if p' represent the pressure,
when the vane is immersed on the front of the vane, since the
velocity in the direction A P R must be equal to that of the vane,

we have
\ . p’
2=| Sds-=,
b= [ 30

and therefore the moving force on the vane will be equal to
(v —u?)
29
and the effective work done per second
Kgp (- w)u

Kgop.

?

29 ’
whence
Best velocity of vane T
= z = °'58

Velocity of current \/ 3

Moving force at best velocity 2 p
Moving force when stationary B 3 -
Effective power 2 )
__po— = 377 =" 385
Gross power W3
Effective power i
- = - 58
Power lost '\/ 3

In the above investigations, it has been assumed that the
pressure in rear of the vane is equal to the pressure of the fluid
before the immersion of the vane. Since the pressure before im-
mersion exceeds very little that of the atmosphere, because -the
depth of immersion is small, this assumption must be looked upon
as practically correct.

The solution given in (b) is rigorously exact on these data.
That given in (@) is a mere deduction from the calculated moving
force on the vane when stationary, and has only been given
because the theoretical co-efficients obtained by that mode of
solution are the same as those adopted by Smeaton in comparing
the results of his experiments with those of theoretical investigation.

The following table gives values selected from the results of
twenty-seven experiments made by Smeaton to determine the
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effective power of a current on a sunk vane, the exact velocity
of impact and the exact quantity of water expended per second
having been ascertained with the greatest nicety. They are
taken from a Paper read before the Royal Society in 1759. A
description of the mode of performing the experiments is given in
an appendix, together with a tabular statement and analysis of the
results : —

: g it

= 2. 3

AN £l

"g ; | § 2 i 3 Remarks.

AR R TI
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5| 52| 83| a2 | 30 | -27| w70 (Grest depth of

4 .38 70 -40 .98 .95 .64 ] {ST:llrlreelet?th of
88 | 67 | 58 | 39 | .. | .. }{Tﬁz‘;fgf’“‘

When a jet strikes a flat vane, which is moving freely in the air
unimpeded by tail water, the theoretical effective power exerted
may be accurately calculated by a direct application of the three
laws of motion, which may be thus enunciated :—

1. A particle, if at rest, will continue at rest, and if in motion
will move in a straight line with uniform velocity, unless it is
acted on by an extraneous force.

2. When a particle is in motion under the action of any foroe,
the acceleration of the particle estimated in any assigned direction
is wholly due to the force resolved in that direction, and is the
same in intensity as if that force alone acted on the particle at rest.

3. When a force or pressure acts on a particle, the moving force
on the particle is proportional to the force or pressure acting on it.

In applying these laws to ascertain the moving force exerted
by the water against the vane, we must go through the inverse
process, and ascertain how much the jet is deflected from its course
by contact with the vane. The moving force necessary to do this,




EFFICIENCY OF WATER-WHEELS. 9

the value of which those laws enable us to calculate, is evidently
equal to the moving force exerted by the jet on the vane, since
action and reaction are equal and opposite.

" The direction of motion of a jet, at the instant it strikes a vane,
may be either at right angles to the plane of contact, or inclined
to that plane at any angle between zero and 90°. If we leave out
of consideration the effect of friction between the fluid and the
surface of the vane, it is evident that that component alone of the
moving force of a jet which acts at right angles to the plane of
contact can have any effect on the motion of the vane, so that if it
were free at the instant the impulse takes place the vane would begin
to move in a direction at right angles to the plane of initial contact.

If the vane be not capable of moving freely, but is constrained
by some extraneous force, such as a rigid connection with other
parts of a machine, the absolute direction of motion of the vane at
the instant the jet strikes may be in a. direction inclined at an
angle to the normal to the plane of initial contact. In this case
the moving force exerted by the jet on the vane will be equal to
the component of the whole moving force resolved at right angles
to the initial plane of contact, and the other component parallel
to this plane will be due to the action of the above-mentioned
extraneous force.

Hence it follows, that in order to ascertain the moving force
exerted by a jet on a plane vane, it will simply be necessary to
resolve the velocity of the jet in two directions, one parallel to the
vane —which, leaving friction out of consideration, will not be
affected by the impulse—and the other at right angles to the
vane. The moving force exerted on the vane will be equal to
the momentum lost by this component.

Fre. 2.

Let A Q be the direction of motion of the jet, AR that of the

vane. At the point A, where the jet strikes the vane, draw AP
at right angles to the vane.
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If then

L PAQ=
L PAR =3
velocity of jet in feet per second = v

” vane ” =u

we ghall have '
Velocity of water parallel to vane = v sin a
» at right angles = v cosin a

Tangentlal velocity of vane = u gin &
Normal velocity of vane = u cos 8.

And if P represent the whole moving force in direction AR of
the motion of the vane due to the impulse of the water and the
other extraneous force, the component of the moving force due to
the impulse of the water will be equal to I cos §, and this will be
equal to the momentum lost at right angles to the vane, or—
W (v, cos a — u cos §)

. 9
where W is the weight of water discharged in a second ; and there-
fore the effective work done will be given by the equation

Pcos d =

W (v, cos a — % cos 8) u cos 8

Pucos? = )
9
which is maximum when u cos 8§ = v,_o;lz and is equal to
2 2
\M_r_;os_a. Since the power of the jet is equal to “2,;‘ we
2
have efficiency = co; *

If v, be the final absolute velocity of the jet
9,2 = v,? 8in %a 4 u? cos 23;

or for speed of best efficiency
. v,* cos %a
v,? = v,% 6in 2a 4 -
2
ol — 3 v,2c08 %a
=, 1 .

Since the power lost by the jet is given by the equation
» W -’ _ 3Wuv,%2cos %
29 8g 7
the effective power is equal to two-thirds of the power lost—the
proportion shown to exist in the case of a flat vane immersed in a
stream being about three-fifths.

cos®
LA
Cece
cccee
ceee
ve
s e
e e

ceee

Ceece
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The solutions which Professor Rankine gives in his work on
« Prime Movers” are based on three assumptions diametrically
opposed in principle to those here enunciated :

(1.) It is assumed that in whatever direction the vane may
move, its velocity in that direction is wholly due to the impulse of
the water.

(2.) It is assumed that the relative velocity after impact is
equal to the relative velocity before impact, if friction be left out
of consideration.

(3.) It is assumed that the relative velocity of the jet, after
striking a curved vane, is unaffected by the curvature of the vane..

Following out his investigations based on these assumptions, he
arrives at the resulting final equation :
)
: 29
where P, u, are the moving force and velocity in any assigned
direction. Upon this equation he puts the following interpreta-
tion: “The energy exerted by the water on the vane is equal
to the actual energy lost by the water—a'consequence of the as-
sumption that friction is insensible.” If this were true it would
follow that all machines would be equally efficient which made the
final velocity the same.

A free vane acted on by a jet of water will move in the direction
of the resultant of the forces exerted on it. The moving force
in the direction of motion will not be equal to the sum of the
separate moving forces at each point, but to the sum of their com-
ponents in that direction. Since general solutions contain all
particular solutions, his general solution must contain that of a flat
vane. It does so only when 8 =0, because then the magnitude of
the relative velocity after impact does not affect the problem.
Professor Rankine has preferred to take this case separately, and
Cco8 3

2
the intermediate step the error involved in assumption No. 1
is introduced. Thus whilst u cos § is given as the value of the
normal velocity, the moving force producing this velocity is put
equal to P sec. §, or the less velocity is produced by the greater
moving force, which is manifestly absurd.

The Author has assumed that the jet is composed of a number
of inelastic molecules of indefinitely small mass & m. If the
momentum § p. v, be resolved tangentially and normally to the
plane of impact, the magnitude of the first component will remain.

finally arrives at the value % for the efficiency, although in
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unaltered, whilst that of the second will become & m. u cos S.
‘Therefore the impulse communicated by one molecule will be
equal to 8m (v, cos a—ucosd) and the whole impulse to
W (v, cos a—u cos 8)

As regards assumption No. 1, it is manifest that the motion of
the vane, if free, whether curved or plane, could only occur in one
definite direction under the action of a jet, and that if the vane
move in any other there must be some force other than that of the
jet constraining it to move in that direction, to which part of the
velocity in that direction is therefore owing.

That assumption No. 2 is erroneous may be demonstrated by
applying the principles of solution laid down by Rankine for the
general case to the case of a flat vane struck obliquely by a jet.

Fie 8.

F

Let the jet strike the vane B E at the point B, and let B C, B D
represent respectively the initial velocities of the jet and vane in
magnitude and direction. Join D C.

D C will represent in magnitude and direction the motion of the
jet relatively to the vane before impact. -

Draw E F parallel to the face of the vane and equal to D C;
also through F draw F G parallel and equal to B D, and join E G.
Through D draw D H parallel and equal to EF, and join H C. If,
therefore, the relative velocity of the water and the vane after
impact be equal to the relative velocity before impact, E G will
represent in magnitude and direction the final absolute velocity of
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the water, and H C the direction and magnitude of the change of
motion of the jet during the interval of contact with the vane.
Also D H is equal to D C, and the two angles D H C, D C H are equal
to each other, therefore each must be less than a right angle, and
therefore the direction C H, in which the jet has been deflected, is
not at right angles to D H, which is parallel to the surface of the
vane.

Therefore the change of velocity caused by impulse against a
plane vane has been in a direction other than normal to the
vane, friction being left out of consideration, which is impossible.
Therefore the relative velocity after impact cannot be equal to the
relative velocity before impact. Draw C H'at tight angles to
D H. In like manner it may be shown that no other line than
C H' can represent in magnitude and direction the.change of
motion of the jet, therefore the relative velocity after impact will
be represented by the line D H'. In E F take the point F', such
that EF' = D H' and draw F' G’ parallel and equal to BD. Join
E G'. Then will E G’ represent in magnitude and direction the
absolute velocity of the jet after leaving the vane.

It follows from this that when a jet strikes a flat vane normally,
which is likewise moving freely in a normal direction, no change
in direction of the motion of jet, but in magnitude only, is occa-
sioned by the impact, so that the final absolute velocity is simply
equal to that of the vane, and the relative velocity to the difference
between the velocity of the jet before impact and that of the vane.
The lateral motion which is observed when a jet strikes a flat
vane normally is owing to the pressure exerted by the succeeding
particles upon those preceding them, which causes the last to
move laterally out of the way. This action and reaction between
the particles of water themselves causes the jet to increase per-
ceptibly before it reaches the vane, so that the efficiency, ascer-
tained experimentally, will be less than that given by theory, since
the velocity with which each particle strikes the vane will be
less than the velocity of the jet.

Hence we see that the efficiency of a cup vane, whether seg-
mental or hemispherical, will be simply equal to that of a flat vane
moving with its plane at right angles to the jet, if the jet strikes
the cup vane normally.

If a jet strike a curved vane in a direction not normal to the
tangent plane at the point of impact, the velocity with which the
jet glances off from the curved vane will be the same as that with
which it would glance off from a flat vane tangential to the surface
at the point of impact if this velocity were not diminished by the
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curvature of the surface intervening between the point where the
jet strikes and leaves the vane.

Professor Rankine affirms that this curvature, if gradual, wiil
have no effect on the relative velocity, * because the deflecting force
acting on the particle of water is wholly normal to the direction of
motion.” Experiments made, however, to ascertain the resistance
to the flow of water in pipes, show that bends, however easy, do
present a resistance to the flow in addition to the surface friction,
which cannot be greater round a curve than along a straight line.
In fact, the statement that the deflecting force acts always normally
to the direction of motion in the same manner as a constant central
force on a particle moving in a circular orbit is not correct. In
the case of curved vanes, the problem to be solved, in order to
ascertain the effective power of the jet, may be illustrated by
supposing the curved vane to be the limiting position of a number
of flat vanes meeting each other at various angles, when their
number is indefinitely increased and their length diminished
indefinitely. !

The following graphic solution of the case of a vane composed of

Fio. 4.

three flat vanes meeting each other at different inclinations, but in
such a manner that there are no re-entering angles, will fully
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illustrate the nature of the problem, and show how to determine
the form best suited to develop the greatest effective power. For
simplicity’s sake, we will suppose that the motion of the vane
is linear, and that gravity does not act on the water after impact
with the first vane, so far as change of velocity is concerned.

Let the compound vane B B' B” B be struck by a jet of water
A B, the direction and magnitude of the velocity of which is
represented by the line BC.

Let BD represent the velocity of the vane in direction and
magnitude due to the effective power exerted by the water and
some other constraining force.

Join D C and draw D H parallel and CH perpendicular to BB,
then will C H represent in magnitude and direction the space
through which the water is deflected per second by impulse against
the chord B B’, and B H will represent in magnitude and direction
the absolute velocity of the jet after impact on the first vane.

Draw B’ B/’ parallel to the direction of motion meeting B H pro-
duced in B,'. Draw B,' B, and B,’ B," parallel and equal respec-
tively to B'B and B’ B”, and thmugh B,"” draw B,"” B, parallel
and equal to B” B"”, then will B, B,'B," B,"” represent the position
of the vane at the instant the jet strikes the chord B’ B" represented
by B, B,".

Produce BB,’ to (', and make B,’ C’' equal BH the absolute velo-
city after impact on the first chord. Draw B,’ D'equal to BD and
parallel to the direction of motion, then will D' C’ represent in
magnitude and direction the relative velocity of the water before
impact on the chord B,’ B,".

Draw C' H', D' H' perpendicular and parallel respectively to
B/ B,”, then will C' H' represent the space through which the
water has been deflected by impulse against the chord B,’ B,” and
B/ H' will represent in direction and magnitude its absolute
velocity.

Through B,” draw B,” B,” parallel to the direction of motion
meeting B,' H' produced in B,”. Draw B,” B,”” and B,” B,
parallel and equal to B"” B" and B” B’ respectively, and B, B,
parallel and equal.to B’ B, then will B, B,’ B,” B, represent
the position of the vane at the instant the jet strikes the chord
an Bam.

By a similar construction it may be shown that C" H" represents
in magnitude and direction the space through which the water has
been deflected in a second by impact with the chord B,” B,"” and
B," H”, the absolute velocity. -Also that B, B,' B,” B," represents
the position of the vane at the instant the jet leaves it. It is plain
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also that B B,’ B,” B,"" will represent the absolute path of the water
during contact with the vanes.

In the above investigation the jet A B is supposed to move
parallel to itself into the positions A, B, A, B,, &c., so as always to
strike the first of the three chords of the vane.

Through C C' C" draw Cp, C' p', C" p" parallel to the direction
of motion, and through HH' H” draw Hp, H' p', H'p" at right
angles to the direction of motion meeting C p, C'p', C" p" in
p, P, p” respectively, then will the sum of the three last represent
the space through which the water has been deflected per second
parallel to the direction of motion, and of the three first that at
right angles to it.

Take a b equal to the sum of the three first, and a ¢ at right
angles. to it equal to the sum of the three last. Construct the
parallelogram abde, and join ad. da will represent in mag-
nitude and direction the space through which the water has been
deflected by the vane per second, and this multiplied by the mass
of the water discharged per second will be equal to the resultant
moving force exerted per second ; also a b and bd multiplied by the
same mass of water will represent the moving force in direction
of motion and the strain on the machinery perpendicular to the
direction of motion respectively. If therefore W be the weight of
water discharged per second, we shall have

Strain on machinery . . . =W b?d
Moving force in direction of motion = W_gab
_ Effective power exerted = Kaz_'B—D
. 2
Gross power of jet . - WBC
29
Effective power  9243-BD "
Gross power B C? -
Effective power 24b'BD 50
Power lost T BC*=B,H"?

Produce B,"” B, to H'", making B,"”” H" equal to B,” H”, then
will B,"”" H" represent in magnitude and direction the final abso-
lute velocity. It is plain therefore that the addition of more
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chords would have increased the effective work of the vame. If
one other chord only be added parallel to the direction of motion,
since the change in direction of the absolute velocity would be
wholly at right angles to the direction of motion, such an ad-
ditional chord would produce no additional efficiency. Also the
nearer the additional chord is to such a chord the less will be the
effective power obtained from the gross power lost, and the less
the final absolute velocity. On the contrary, the more remote the
additional chord is from the limiting position of parallelism to the .
direction of motion, the greater will be the ratio of the effective
force to the power lost, and the greater the final absolute velocity.
It therefore follows, that to utilise to the utmost the final absolute
velocity By H'’, there ought to be a succession of chords between
B,” B,”, and the limiting position B,"” B'’ meeting each other
at indefinitely small equal angles. If these conditions were ob-
served, the change in direction of motion of the absolute path
would be gradual and uniform, and therefore the absolute path
itself circular, since the same reasoning applies to every successive
change of direction between the different chords. Therefore, in
order to develop the maximum effective power obtainable from a
curvilinear vane, the relative path—that is, the shape of the vane
—must be so designed that the absolute path of the jet during
contact will be circular. Also, leaving friction out of considera-
tion, the easier the radius the greater will be the efficiency, because
the more numerous and minute will be the successive changes of
direction.

It is plain that any effective powcr developed after the direction
of the absolute velocity has once become parallel to the direction of
motion will retard the motion, therefore the limiting position of
the last tangent to the curve of each of the paths will be one of
parallelism to the direction of motion. In order to comply with
the condition of gradual change of direction, the first tangent
to the relative path ought to be parallel to the initial relative
motion of vane and water.

If the motion of the vane be curvilinear, as is the case in all
water-wheels, the velocity per second of different parts of the vane
will vary. In the case of wheels of large diameter the linear
velocities of different parts of the vane will be practically the
same ; but in the case of wheels of small diameter, such as turbines,
the linear velocities of the inner and outer edges of the vane will
" vary very materially. The principles of solution are, however, the
same in both cases, and in both therefore the absolute path ought

to be circular.
c
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The determination of the elements of this absolute path, and of
the form of the vane necessary to cause the water to describe this
path constitutes the whole secret of the art of constructing turbines.
The method of doing this will be fully discussed in Part II.

In the case of vertical water-wheels, in which the water glances
off at the same edge at which it strikes, the effective theoretical
power, as the Author will endeavour to prove in discussing the
theory of the Poncelet wheel, cannot much exceed that obtained

*. from a flat radial vane. It remains then only to investigate the

nature of the action of the water during that part of the fall in
which it acts by its weight only, to be in a position to discuss
the principles of construction and efficiency of these wheels.

If a support, to which a heavy body is attached, be moving
vertically downwards with a unifornr velocity less than that due
to the height through which the body may have fallen before it
reached the support, the downward force exerted by that body
on the support after impact will be the same as if that body and
the support were at rest.

If the support have a downward acceleration of motion per
second, which must necessarily be less than the acceleration due to
gravity, the pressure on the support will be less than when it is at

rest or moving with a uniform vclocity by the quantity V_Vgiv

’

W being the weight of the body, and 8 v the acceleration per
second. On the contrary, if the support have a retardation of 8v feet

per second, the pressure on the support will be increased by Wav

Now, in the case of a vertical water-wheel moving with a uniform
angular velocity, the vertical velocities of points in the periphery
near the top and bottomn will be least; but the increments on
leaving and the decrements on approaching either of these points
in vertical velocity per second will be greatest. Near the middle
part of the fall the vertical velocities of the periphery will be
greatest, but the increments and decrements least.

1t follows, then, that the effective power of the water developed
in falling a given vertical height near the top of a wheel is less
than that developed in falling through the same height near the
‘middle, whilst the effective power developed in falling through
the same height near the bottom is greater. If, then, by means of
a breast or other contrivance the water during that part of the
descent which lies below the centre of the wheel can be so retained
in contact with the buckets as to insure the equality in value of
the tangential components of the weight at all points equidistant
from a vertical line through the axis, it follows, leaving friction
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against the breast out of consideration, that if the point at which
the water enters the wheel is nearer to the summit than the point
of discharge is to the bottom, the effective power developed will be
less, if at the same distance equal, and if more remote greater, than
that due to the height through which the water has fallen in
contact with the wheel. At first sight it would oppear that this
last conclusion could not possibly be true. Each of the three,
however, admits of a very simple explanation. In the first case,
the whole of the excess of the increment of the vertical velocity
gained in the upper quadrant over that lost in the lower quadrant
is not utilised. In the second case, it is exactly utilised. In the
third case, not only is the whole increment of vertical velocity
gained in the upper quadrant utilised in the lower, but part also
of the initial vertical velocity of impact is destroyed.

It appears, then, that the water in the buckets in the lower
quadrant acts partly by weight, partly by momentum, or in other
words, a low breast wheel moving at the same rate as a high
breast wheel relatively to the initial velocity of impulse of the
water, utilises more of the head due to that velocity, and is so far
more efficient.

The increments and decrements in vertical velocity per second
due to the angular motion of the wheel are, however, so small com-
pared with the acceleration per second due to gravity, that we may
assume the effective power of that part of the fall during which
the water acts by its weight only as equal to the gross power.

Although a given weight of water near the middle will counter-
balance a greater weight hung round the axis than the same
weight nearer the vertical through the axis, the work done in
both cases in falling through the same vertical height will be the
same, because the respective angular motions will be inversely as
the respective momenta.

The preceding investigations enable us to determine the best
proportions and theoretical efficiency of all kinds of vertical wheels
in which the water glances off the same edge at which it strikes
the vane, with the exception of Pencelet undershot wheels, which
will be discussed separately. These wheels are of two kinds:

(1.) Wheels where the water acts partly by weight, partly by
impulse.

(2.) Wheels where the water acts solely by impulse.

In the first class of wheels the proportlon of the fall whlch acts
by impulse to the whole fall is determined by the following
considerations :

(1.) The greater the speed of the wheel the less will be the

c2
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breadth of crown necessary to carry the quantity of water, and
therefore the less the first cost of the wheel.

(2.) The greater the speed of the wheel the greater must be the
ratio of that part of the fall which acts by impulse to the whole
fall, and therefore the less the efficiency.

It is found that practically the velocity of the shrouding of
overshot and high breast wheels cannot exceed about 6 feet per
second without causing the water to splash over the edges of the
buckets. Since the best velocity of the perimeter is about equal
to half the velocity of impact, the greatest velocity of impact
ought not to exceed 12 feet per second, which is due to a fall of
about 2 feet 3 inches. In the case, therefore, of high falls no
material increase of efficiency can be obtained by diminishing the
velocity ; where, however, the fall is low, a very great increase of
efficiency can be obtained by diminishing the velocity of impact.
The following table gives the theoretical and estimated actual
efficiency of breast wheels for falls ranging from 3 to 12 feet,
corresponding to velocities of impact due to 1 foot and 2 feet
respectively, 6 inches being deducted for clearance at the tail.
The theoretical values have been calculated on the assumption that
the efficiency of that part of the fall which acts by impulse is equal
to -4, and that the effective power developed by the part which
acts by weight only is equal to the gross power. The estimated
actual values are based on the assumption that the same relation
between actual and theoretical values holds good for each fall.

For falls of over 10 feet the experimental co-efficient of efficiency,
with the ordinary velocity of periphery, is about ‘7. The table
below gives 86 as the theoretical efficiency, and therefore the
ratio actual to the theoretical will be equal to +82. This co-efficient
will give too high estimated values for the low falls, but sufficiently
near the truth for the sake of illustration.
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In the case of low breast wheels the velocity of the perimeter
is not limited by the same consideration, since the shrouding is
surrounded by a breast which prevents the escape of the water.
The determination of the velocity depends without limitation
solely on the two conditions already stated. By the aid of theee .
two conditions we may, according to circumstances, determine
whether economy should be solely consulted at the expense of
efficiency by adopting an impulse wheel, or regard be had only to
efficiency by adopting a weight and impulse wheel with the least
possible velocity of perimeter.

In the case of overshot wheels the water begins to drop from the
buckets very soon after they dip below the axis of the wheel.
Since it is impossible to ascertain the quantity which runs out of
each bucket at each successive interval in the descent, it is
impossible to calculate theoretically the efficiency of an overshot
wheel.” Their efficiency is manifestly much less than that of
breast wheels. .

The breadth of the crown of a high breast wheel must be deter-
mined as follows. If D be the diameter of wheel in feet, § the angle
subtended at the centre by the full buckets, & the height due to the
velocity of impulse, and K the ratio of the speed of the wheel to the
velocity of impulse, the time of describing the arc of full buckets will

ﬁ]%/;—b_h, and if Q be the quantity

of water discharged in cubic feet per second, the quantity in the

buckets at any instant will be equal to ,—-21—)—0_—_ . If, therefore,
2K /2gh

b be the breadth of the crown, ¢ the thickness of a rim of water

spread equally over the crown so as to equal the quantity in the

buckets, we must have

manifestly be equal to

Débe QD6
2 2K Y29k’
or b=—9——__°
tK y2gh’

the value of ¢ depends upon the shape of the buckets; it will
rarely exceed half the depth of the crown.

" The breadth of an impulse wheel is determined solely by the
size of the aperture necessary to discharge the given quantity of
water, and may therefore be materially diminished by a slight
increase in the depth of that aperture. It has already.been shown
that the diameter of a breast wheel ought to be so chosen that the
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point in the circumference at which the water strikes the wheel is
not at a less distance from the summit than the point at which
the breast terminates is from the lowest point. That of undershot
impulse wheels, with flat radial vanes, may be determined as
follows :

Fic. 5.

1st. Undershot wheels with vanes working clear of tail water.

Let F ED represent the wheel race,. which may be elther
horizontal or shghtly inclined to the horizon.

This inclination is given in order that the velocity of the jet,
when it leaves the sluice, may not be lessened by friction when it
strikes the vanes. Since this ought, therefore, to be what is called
the train inclination due to that velocity, its rate will increase
with the increase of head, and it is plain that the velocity of the
jet on issuing from the aperture will be exactly equal to the
velocity with which it would have sfruck the vane if it had
moved along a horizontal race of the same length. Therefore the
only way in which loss of head from this cause can be avoided is
to put the opening of the sluice close to the vanes.

In order to let as little of the water as possible escape without
striking the vanes these ought to be as close together as possible,
and the axis ought to be so situated that the outside periphery of
the vanes is tangential to the wheel race. Also in order to avoid
back pressure it is manifest that this point of contact ought to be
the bottom of the race.
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Through D, the bottom of the race, draw D O at right angles
to F D, then the centre of the axis ought to be in this line. Take O
for the centre. Draw the arc D B A meeting the surface of the
Jjet in A, join O A and draw O B bisecting the arc AD in B. Now
the theoretical effective power developed by any vane at any
instant will be to the whole power of the water striking it in the

2
ratio 2% , where a is the angle between a normal to the vane

2

and the direction of the jet, and is therefore equal to the angle
at the centre subtended by the arc between the lewest point D
and the bottom of the vane. Since the distance of B from the
bottom of the race is only one-quarter of the depth of the current,
fully three-quarters of the whole flow would strike the vane in
this position if the interval between the vanes were not less than
half the arc AD. If, therefore, the diameter of the wheel be so
designed that only a certain percentage of the power which acts
against the vane in this position shall be lost by obliquity, the
total percentage lost from the same cause will not differ perceptibly
from this amount. Draw A E at right angles to F D, then AE
will be equal to the depth of the current. Let R, D, ¢ represent
respectively the radius of the wheel, the length of the arc sunk in
the current, and the depth of the current in feet. Draw the chord
A D. Then the angle ADE will be equal to the angle BO D.
Its magnitude is always so small that its sine is equal to its circular
measure nearly. Therefore

D = R X circular meas. of £/ AOD

= R x twice the sine of / ADE
2R-AE

AD

Since the chord A D is practically equal to the arc A D, we have
the following relation between the three quantities:

D2=2RLt

Since this relation is independent of the velocity of the current,
the height of the fall has nothing to do with the diameter of the
wheel. So far as efficiency is concerned the effective power lost
by the obliquity of the vane in the middle position to the gross

TR s 1—cosZa
power of the water striking it is in the ratio of —— 1

1—cos?e sin%a AR 2
2 T2 T 2AD: T 2D

in which
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If, therefore, p be the maximum admissible rate per cent. of
loss of head due to obliquity we shall have

o p

2D? ~ 100°
Substituting for D its value we get

pR =25t

The following table gives the diameters and lengths of perimeters
immersed corresponding to a few different depths of currents and
different values of p.

3 1) Depth of Current. J
3Bz -
ag% " "
o
ron ron ron * ron ‘
8-4 12:6 89 | 25°0 | Diameter.
2
1-8 . 2:6 89 ‘ Periphery immersed.
. |22 68 | 94 | 12:6 leneter
1-2 21 | Periphery immersed.
2-1 82 | 4'8 | 68 | Dismeter.
8 |—
0-10 1:6% 1-11 2'6 | Periphery immersed.
phery

Since the diameter of wheels of equal efficiency are directly as
_the depth of the current, which may be varied at will, the diameter
of a wheel of this class may be designed to suit the speed of various
kinds of machinery by direct action, without affecting the efficiency,
and by this means the heavy loss of power due to the friction of
intermediate gearing may be avoided.

(2.) Undershot wheels with sunk vanes.

The same formul® apply to this class of undershot wheels, ¢ in
this case representing the depth of the periphery below the surface
of the current.

There is another class of undershot wheels with curved vanes,
invented by Poncelet, which requires separate investigation. The
‘vanes are ourved in such a manner, that a tangent to the curve
made by a vertical section at the lowest point is parallel to the
relative velocity of the water and the vane, the tangent to the
upper edge being radial.

Of these wheels Professor Rankine remarks, that the water
finally glances off the vane in a direction relatively to the vane,
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parallel, but opposite to that in which it glanced on to the vane,
s0 that the final absolute velocity will be radial, if we look upon
the vane’s motion in the interval as wholly linear at right angles
to the radius through the point of impact. Therefore, in accord-
ance with his rule that « the energy exerted by the water on the
vane in direction of motion is equal to the energy lost by the water,”
the efficiency will be equal to cos *a, where a is the angle between
the direction of the jet and the vane, friction being left out of con-
sideration. The words in italics are added by the Author. They
are necessary to make the statement a faithful interpretation of the
equation .

_WE'—-9)

. S 2g

This is the accepted theory of the Poncelet wheel. To illustrate it
more clearly, let us consider the action of an indefinitely small
particle of water of mass 8m, and in order to simplify the action
of gravity, let us suppose the motion of the vane horizontal. Leta -
v, CO8 a

2

a direction opposite to that of motion, so as to bring the vane to
rest. If neither friction nor curvature cause loss of velocity, the
particle will rise to the height due to the relative velocity, and at
that instant its relative velocity will be nil and absolute velocity
to v, CO8 a )

Pu

velocity be impressed on both the vane and the particle in

equal . If, then, ¢v,? represent the energy communicated

to the vane, we shall have in accordance with the theory just
enunciated, since the energy lost by the water has been exerted in
imparting energy to the vane and overcoming the resistance of

gravity,
cos Za
2(1 —~
dmov?( 1 7y )

2 ’

where H is the height due to the relative velocity. The particle
will then begin to descend, and its relative velocity, when it
reaches the bottom of the vane, will be equal to the initial relative
velocity in magnitude, but will be opposite to it in direction, so
that the final absolute velocity will be simply v, sin a vertical, and
if ¢'v,® represent the emergy imparted to the vane during the

descent, we shall have
cos %a .
valz( 4 s 2a.>

'2 ’

cv,2+4 dmgH =

cv?—8dmgH =
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2
therefore (c+¢)v? = —2o—e.
If for H we substitute its value

( 008 *a ~+ sin a)

29
we get _ cv?=cv?=

8m cos %a

4 —
g0 that the energy imparted during the ascent has been equal to
the energy imparted during the descent. The whole energy
imparted will therefore, theoretically, be equal the sum of the
energies exerted by the separate particles; but when we consider
the action of the whole together, it is evident that only those
particles which strike the vane first will reach the top, the
subsequent particles being obstructed in their ascent by the return
of the first, and the particles which first reach the top will not act
on the vane on their return, being forced from it by the upward
motion of the succeeding ones. So that the energy imparted to
the vane due to both direct action and reaction will be much less
than that assigned by theory in the case of one particle.

In order to eliminate the effect of the action of gravity, we will
suppose that the axis of the wheel is vertical, so that the motion
of the jet is horizontal. At the point where the tangent to the
vane is radial, since the relative velocity is unaffected by the im-
pulse, the absolute velocity will be equal to

00
wn/

and therefore the energy lost by the water and imparted to the vane
will be equal to — dme, 4008 =2
added to this with its radial end meeting this tangentially. The
relative velocity when it reaches the other end of the vane will be
unaltered in ‘magnitude, but opposite in direction, so that the final
absolute velocity will be equal to v, sin a, and therefore the energy
lost by the particle of water during contact with the second half
2 008 2
of the vane will also be equal to dma,? cos 4008.—‘1. Since the flow is con-
tinuoﬁs and the water discharged freely from the opposite end of the
vane, one particle of water does not interfere with another, and the
efficiency of such a compound vane is theoretically equal to cos %a.
We are now in a position to discuss the two turbine theories.
According to one the turbine is simply an impulse wheel, accordmg,
to the other a pressure and impulse wheel.

Imagine now another Poncelet vane
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If a turbine be viewed as an impulse wheel only, it is immaterial
what the shape of the vanes may be, so long as there are no re:
entering angles, provided that they are tangential to the relative
velocity on the receiving side and their final relative direction is
such that the final velocity is a minimum, if the theory expressed
by the equation
W (v — v

29
be true. But if, on the contrary, the effective power imparted is
not equal, but only proportional to this, it follows that the shape
of the vane is of the utmost consequence. This last is the theory
maintained by the Author and fully discussed in Part II.

According to the other theory the power is imparted to the
turbine partly by the statical pressure of the fluid, partly by
change of vis viva. Thus if p be the pressure of the fluid on
leaving the guide blades, w, the weight of an unit of volume of the
water, using the symbols explained in Part II., we have for the
gross power of the fall ’

wQH = (£ +3)u0;

and if p',v; represent the pressure a.nd velocity of the water on
leaving the turbine, the power lost will be equal to

wQE-(£48)0q - (L% 122 ) 0g

In order to ascertain the value of the final absolute velocity u;, the
turbine is supposed to be reduced to rest by applying both to it
and the water a velocity at every point equal and opposite to that
of the vane. The relation between the initial and final relative
velocities and pressures is given by the theorem of Bernouilli,
which may be thus enunciated (Viry, “ Cours de Mécanique,”
Tome IV.):—

If a liquid be moving with a steady motion along a pipe of a
variable section, but varying in such a manner that the changes of
section are gradual (so that there is no agitation in the water),
then, if in addition the friction of the molecules between each
other and against the sides of the pipe be neglected, Bernouilli’s
theorem states that—

The difference between the heights due to the velocities at each
section is equal to the difference of level of the centre of gravity of
the two sections, increased by the difference between the heights
due to the pressures.

If, then, u,, u, represent the initial and .final relative velocities

Pu=
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we shall have in the case of a parallel-flow turbine, where % is the
depth of the revolving drum,
4y} — u,?
29
In the case of an outward and inward flow,

2 2 !
U —%" p—p

=7
=E=Z

29 o
Now the value of 4, is known directly in terms of the given values
" of v, and v the velocity of whirl of the receiving side of the drum,
and the angle a between their directions, therefore the above
equations give the value of u, in terms of the same known quan-
tities, and by this means we can determine the value of the final
absolute velocity v,, the angle B between the direction of whirl
and the final tangent to the vane being quite arbitrary, except
that it must satisfy this relation—
by, sin a = b'u, 8in B8
in the case of parallel-flow turbines, where b, b’ are the initial and
final breadths of the crown, and in the case of outward-flow
turbines, the relation
R, D, v, sin a = Ry D, , sin B.
This condition is simply the analytical expression of the statement,
that the quantity of water which enters the turbine. is equal to
the quantity which leaves it, the spaces between the vanes accord-
ing to this theory being always full.

The Author will endeavour to show—

1st. That no such statical pressure could exist in a turbine ;

2nd. That no turbines are in reality designed on the supposition
that such a pressure exists.

As to the first : Since the pressure must be the same at every
point, whether the turbine be in motion or reduced to rest by im-
pressing equal and opposite velocities on the water and turbine, it
follows that the pressure is unaffected by the motion, and that
therefore it either remains constant to the end, or is converted
into vis viva, which is itself likewise unaffected by the motion
through the turbine, and therefore the whole head due to the
pressure is either lost or is utilised on issuing from the vanes in
the same way as in the case of a reaction wheel. In a turbine
the whole of the useful effect is obtained before the water issues
from the vanes. As to the second: By means of Bernouilli’s
theorem, Viry has shown that if p,,p, represent the pressure due
to the atmosphere and tail water,
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- 2R 2]

also in the case of parallel-flow turbines

sombn iy Ying)

and in the case of the Fourneyron
P _Ptp _D.R.’einﬁ
E-2imli-3 R’mn2a}
the factor R,2—= R,? being due to the supposed existence of a
centrifugal foree

Viry divides his investigation into two heads:—

1st. Given a theoretically perfect turbine to find the discharge
and the efficiency.

2nd. Given the discharge and the height of the fall to design
a theoretically perfect turbine capable of passing the water.

Towards the end of his investigations into the final phase of the
problem, he states that the internal pressure p must be greater
than the external pressure p, 4 p, to prevent the tail water rushing
into the turbine through the space between the fixed and revolving
+ drums. It isstrange that the thought never struck Viry, that where
the tail water could rush in, the water within the turbine could
rush out, if the internal pressure were greater than the external.

In completing the second part of his investigation, it is necessary
to determine the values of b and b', D, and D,. This he does by

b sin D, R,% sin .
puttmg 1— ey B and 1 - oo °Ro n 25 respectively equal to
zero. - This mmply means that the pressure within the turbine
must be equal to the pressure without, and that the initial velocity
v, must be equal to ,/2g H, that is, it must be the same as if
discharged freely into the open air. Turbines, then, are simply
impulse wheels. -

There is yet another point to be investigated, viz., to what
extent is the co-efficient affected by a departure from the best
velocity of the wheel. Although the theoretical and experimental
values of the best ratios do not coincide, the magnitude of the
range of values corresponding to a given decrease of efficiency
determined from theory will probably not differ much from that
ascertained by experiment.

The formula for undershot wheels with sunk vanes is

2 __ g2
Efficiency = (17'51", = (1- KK,
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wheré K = %, now the theoretical best efficiency is 385, cor-

responding to the value 58 of K ; but the value of the expression
(1 — K?) K is never less than 357, or the variation from best
efficiency does not equal 3 per cent., for values of the ratio varying
from -4 to *7.

The formula for undershot wheels with vanes working clear of
tail water is '
Efficiency -2 (v;-;i)u =2(1 - K)K,

the value of the best efficiency being ‘5 corresponding to the
value ‘5 of K. The variation in this case from best efficiency
will not exceed 3 per cent. for values of K from -38 to -62.

The Author has not been able to find any statement of the
result of experiments to ascertain the actual efficiency of wheels
with flat vanes working clear of the tail water like those of
Smeaton for drowned vanes. If we use the same value of the
ratio efficiency of wheel = theoretical efficiency of vane, viz., * 77,
we shall get *38 as the experimental efficiency of these wheels. It
has been shown that ‘8 is a fair experimental value of the factor
by which the theoretical value of the efficiency of breast wheels
ought to multiplied, and we are now, therefore, in a position to
decide upon the best class of wheel to use in any case.

When the choice lies between an undershot wheel with vanes
drowned and vanes working clear, we may determine the limit of
equal efficiency thus: Let H be the height of the fall at which
equal efficiency is obtained, and & the clearance at the tail in the
case of the wheel working with its vanes clear of the tail water,
then ‘3H=-38(H-%);
if we put b = 4 inches, we get H = 1' 7".

Now 4" is the least value we can give for the clearance at the
bottom of the race, and therefore for falls of less than 18" an
undershot wheel with drowned vanes should be used.

In the case of weight and impulse and impulse wheel, if the
point of impact in the first case be only 1 foot below head water
the equation for determining the limiting position is

‘38 (H-h) = 8 {(H-h—1) 4 -4}
or with the same value of &,
H = 1-47.

If the point of impact be 2 feet below head water, the equation
will be 38 (H—4) = -8 {(H-h—2) 4 -8}
or H = 2-7.
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So far then as efficiency alone is concerned, it would seem that the
choice lies only between breast wheels and wheels with submerged
vanes; but there are two other elements in the question, viz., first
cost, and loss of efficiency by the flooding of the tail race. Now
in the case of very low falls the difference between the efficiencies
of breast wheels and undershot wheels is very slight, whilst the
difference in the first cost is very great, and it is precisely in
these cases, which usually occur at weirs in large rivers, that
the tail race is most frequently and deeply drowned by floods.
Although loss of el‘ﬁclency by resistance from the tail water may
be about the same in the tgo cases, the quantity of flood water
acting against the undershot wheel may be increased to any
amount so0 as to make up for loss of efficiency, whilst only a limited
quantity can be let on to the breast wheel. Owing to these two
causes, impulse wheels ought to be used for less falls than
3 feet 6 inches. )

To fill this gap, then, it is plain that we ought to use a wheel
whose efficiency is unimpaired by the rising of the tail water, and
the only wheels capable of fulfilling this condition are turbines.
Since these wheels are much cheaper than breast wheels, if they
were of equal efficiency it would follow that they ought in all
cases to be used for falls over 2 feet. The conclusion, however, at
which the Author of this Paper has arrived is that the efficiency
of the best constructed turbines cannot much exceed -50, and
therefore we ought to adopt:

(1.) For falls under 2 feet, an undershot wheel w1th sunk
vanes.

(2.) For falls from 2 to 5 feet, a turbine.

(8.) For falls from 5 to 12 feet, a breast wheel for the summer
flow, supplemented by a turbine in flood time.

(4.) Above 12 feet, a breast wheel only, unless the fall be so
great that the first cost would put a breast wheel out of question.
In that case a turbine ought to be adopted.

: . PART IL

PrincipLES oF CONSTRUCTION AND EFFICIENCY OF TURBINES.

I~ the following investigation the head of water referred to is the
nett head at the point, where the water is discharged from the
guide blades in the supply chamher against the vanes of the



32 PRINCIPLES OF CONSTRUCTION AND

revolving drum after all losses of head due to its passage through
the supply pipes and the supply chamber have been deducted ; in
other words, the height due to the velocity with which the water
would issue freely into the air from the guide blades. -

It has been shown in Part I. that when a jet strikes a curved
vane, moving in any assigned direction, the vane ought to be of
such a shape that the absolute path is circular; that the tangent
to the vane at the point where the jet strikes it should be parallel
to the relative motion of the jet and vane, and the tangent to the
vane at the point where the jet leaves the vane should be parallel
to the direction of motion of the wane if friction be left out of
consideration.

Since the quantity of water passing every point of the vane at
the same instant is constant, the area of the jet estimated at right
angles to the direction of absolute velocity must be inversely as
the absolute velocity, and estimated at right angles to the relative
path must be inversely as the relative velocity. It follows, there-
fore, that when two or more vanes similar and equal in every
respect, and similarly situated with respect to the directions of
motion of the jet and vane, are moving in any assigned direction,
the area of the space between the two can never be less than
aTv]’ where a is the area of the section of the jet at the instant
it leaves the guide blades, v, its initial absolute velocity, and v
the relative velocity at any instant, if the required condition, viz.,
that the initial velocity on leaving the guide blades should be the
same as if the jet discharged freely into the open air, is complied
with.

If the area at any point is less than this the initial velocity will
be less, since the total quantity of water discharged will be less,
whilst the area of discharge at the guide blades remains constant.
Consequently the nett head at the orifice of the guide blades will
‘be expended partly in producing velocity, partly in producing
pressure against the vanes between the point where the jet strikes
them and the point to which v refers. Now the head due to the
pressure against the vanes is wholly lost, since the pressure is
exerted equally against both vanes, and therefore tends as much to
retard as toaccelerate the motion of the vanes. The same remarks
apply to the absolute path of the water.

In the investigation of the case of a single vane the jet was
supposed to move parallel to itself in the direction of motion so as
to strike the vane at the same point at each instant. In turbines
there are a succession of jets immediately following each other.
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the direction of the absolute velocity of each jet being inclined at
a constant angle to the direction of absolute velocity of the vanes.
It is evident that this corresponds exactly with the condition laid
down in the case of a single jet and a single vane, provided there
are also a succession of vanes equal in number to the jets, and the
problem we have to solve is therefore what must be the shape of
the vane in order that :

(1.) The tangent to the vane at the point of impact shall be
parallel to the relative motion of the jet and vane.

(2.) The absolute path shall be circular. .

(8.) The absolute velocity shall never be less than aT:;‘ , Where a
is the area of the jet, v, the velocity of discharge into the air,
and a’ the area of the absolute path at right angles to the direction
of motion of the jet.

Since the vanes are similarly situated with respect to the
direction of motion, if that motion be linear the interval between
the vanes estimated parallel to the direction of motion will be
constant, and therefore the area at right angles to the absolute
velocity will increase until the direction of absolute velocity is at
right angles to the direction of motion, and will then begin to
decrease. Therefore the minimum possible magnitude of this
final absolute velocity must occur when the direction of that final
absolute velocity is at right angles to the direction of motion.
Since the areas at right angles to the direction of motion are all
equal, this minimum final velocity can never be less than the
component of the initial velocity at right angles to the direction
of motion; also, if this final velocity be equal to the above com-
ponent of the initial velocity, this component will have the same
value at every intermediate point, since the vane cannot have
exerted any force on the jet to give this component either a
maximum or a minimum value between the instant of impact and
of finally leaving the vane. Therefore, in order to obtain a
maximum of efficiency, since this corresponds, ceteris paribus, with
a minimum final velocity, we must so design the vanes that the
component of the absolute velocity at right angles to the direc-
tion of motion is equal to the same component of the initial
velocity.

In the illustration given above of the problem we have to solve
the path of the vanes has for simplicity’s sake been supposed
rectilinear. In the case of turbines it is in reality circular. The

D
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effect of this curvilinear motion will be discussed in each case
separately. They will be taken in the following order :

(1.) Outward-flow turbines.

(2.) Inward-flow turbines.

(8.) Parallel-flow turbines.

The following symbols will be used to-express the same elements
in each case:

Q = quantity of water discharged per second in cubic feet ;

H = whole head in feet ;
v, = velocity of discharge from guide blades in feet per second ;
o = angle between direction of jet and direction of motion ;
8 = angle between radii through the point of impact and the
point where the absolute path cuts discharging side;
R, = radius of receiving side of revolving drum ;
R,= do. d.ischarging do.;
p = value of ratio R, =R, ;
p = any intermediate radius between R, and R,;
A = an area of section of jet parallel to direction of motion ;
o = angular velocity of drum;

, = depth of drum parallel to the axis in cases (1) and (2) ;
at receiving side;

D,= do. do.  at discharging side;

d = any intermediate depth between D, and D,;

r = radius of absolute path ;
also let D,, Dy, d represent depths of drum in parallel-flow turbines
parallel to the axis at the circumference nearest to and most remote
from the axis and at any intermediate point.

Fig. 7 (p. 42) represents part of a section at right angles to
the axis through guide-blade chamber and revolving drum of an
outward-flow turbine. O is the centre of the axis of the shaft.
OB and OQ are the internal and external radii of the revolving
drum. In these turbines the water flows outwards through the
guxde-bla,de chambers and strikes the vanes of the revolving drum
in the direction A B indicated by the arrow, making the angle
A BC with the direction of motion of the vanes, B C being a
tangent to the common circumference of guide-blade chamber and
revolving drum, and A B a tangent to the guide blade at a point
where a guide blade meets that circumference. The angle a is
therefore equal to the angle ABC, and the component of the
initial velocity parallel to the direction of motion is v, cos a, and
at right angles to it v, sin a. Produce AB to T. Join O T, and
in O T produced take the point Q, such that T Q = BT. Through
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B and Q draw QO’, BO', at right angles respectively to BT and
T Q, intersecting each other in the point O': with centre O’ and
radius O'Q = O'B describe the arc Bp Q. If the vane be so
designed that B Q represents the absolute path, the conditions laid
down will manifestly have been complied with, since the water
initially moves tangentially to the absolute path, and finally
radially at right angles to the direction of motion.

Since Q is the point of discharge, we have OB = R, and O Q =R,.
With centre O and radii, whose values lie between R, and R,,
describe a succession of arcs, such as pP, p' P, &c., equidistant
from each other, pp’ being points in the absolute path. Along
these arcs measure off p P, p’' P', such that if p, p’' represent the radii
op, O p’ respectively,

op(p—Ry))

pP= v,sina '

PP = wp (P - l)
v, 8ina

then will the locus of all such points P,P’, &c., represent the
shape of a vane which will cause the jet to describe the absolute
path BpQ if the radial velocity remain constant and equal to
v, sin a, since a particle of water will reach the points p,p' in
the absolute path simultaneously with the corresponding points

P, P, &c., of the relative path, wp, wp', &c., being the velocitiee ‘
- R,

v, sin a

H

of points P, P’ parallel to the direction of motion and —

. stl &c., the time it takes the particle to move radially through
1

the spaces p — Ry, p' — R,, &c., in accordance with the assumption
that the radial velocity is constant and equal to v, sin a. If we
take a point in the relative path at a distance from the centre
equal to R, 4 8 p, the chord joining the points, whose distances from
the centre are R, and R, 4 8p respectively, will be inclined to the
direction of motion at an angle whose tangent is equal to

v, 8ina
v, cosa — o (R, 4 8p)
when 8p is indefinitely diminished. This chord becomes ulti-

mately initial tangent to the relative path, and the tangent of its
inclination to the direction of motion will be equal to

v, 8in a
vyco8e—oR,’
or the vane initially will be parallel to the relative direction of
D 2



36 PRINCIPLES OF CONSTRUCTION AND

the motion of the jet and vane. If we impress upon each particle
of the water and of the vane at any instant the absolute velocity
of the vane in an opposite direction so as to bring the vane to
rest, the components of the final velocity of the water will be
radially v, sin q, and tangentially w Ry; and therefore the tangent to
the relative path at the point where the jet leaves the vane will be
inclined to the direction of motion at any angle whose tangent is
equal to .
v, 8in a

(DRO ’

which is in all cases very small ; so that a vane constructed in the
manner shown very nearly complies with the second condition
of maximum efficiency for correct vanes, viz.,, that the tangent
to the relative path at the point where the jet leaves it should be
parallel to the direction of motion of the vane.

Since the motion is curvilinear, sections throngh the jet at
successive points of the vane parallel to the direction of motion
will not be parallel to the first similar section at the point of
contagt of vanes and guide blades, but will be inclined to it at an
angle 6, which is equal to the angle between the radii passing
through the points where the initial section and section referred
to cut the vane. If ¢ be the angle between the radius vector, and
the tangent to the absolute path at any point, the angle between
the tangent to the absolute path and the initial radius will
manifestly be equal to 6 - ¢, since the radius vector always lies
between initial radius and the tangent. Therefore if v, sin a remain
constant, the absolute velocity at any point (p, 6) in the absolute path,
taking centre O for origin, and initial radius as the initial line,
will be equal to v, sin a sec (6 4 ¢); and therefore the radial velo-
city at the same point will be equal to v, sin a sec (6 4 ¢) cos
¢, which is greater than v, sin a sec 6, since cos ¢ cos 6 is greater
than cos (6 + ¢). Therefore the radial velocity will always be
greater than v, sin a sec 6, if loss of velocity due to friction and
curvature of absolute path be left out of consideration, until we
reach the point of discharge, at which the direction of the absolute
velocity is at right angles to the direction of motion, and the final
absolute velocity therefore equal to v, sin a sec §, so that the final
area need not exceed A cos 8. Since, however, both friction and
curvature cause loss of velocity, it is evident that the final area
must be greater than this, but how much greater it is impossible
to ascertain. The condition that the initial velocity should be the
same as if the jet were discharged into the open air will be complied
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Av sina

with if the area of each section be not less than , where

v i8 either the absolute or relative velocity according as the section
referred to is at right angles to the absolute or relative velocity.
It does not matter how much it may exceed that amount.

In outward-flow turbines, if the depth parallel to the axis be
constant, the area at the point of discharge will be sufficient if the

loss of radial velocity does not exceed v, sina (1 — %) A common

value of the angle a is 20° and the value of the ratio% is never
1

less than 1-3. This loss therefore would correspond with a loss of
about 8 per cent. of the whole initial velocity, an amount much in
excess of what would really be incurred. Since the vanes recom-
mended in this Paper are designed on the assumption that, owing
to the resistance of friction and curvature, the radial velocity
remains constant and equal.to the initial radial velocity v, sin a,
the final loss of velocity would be equal to v, sin a (sec § — 1),
which for ordinary values of « and 8§ amounts to about 2 per cent.
of the whole initial velocity.

‘We have next to investigate what will be the probable effect of
a variation of the radial velocity from the observed constant value
v, sin a. At the instant the jet strikes the vane the radial velocity
will be equal to this, whatever its subsequent changes may be;
therefore the tangent to the vane initially will always be parallel
to the relative velocity of the water and the vane, so long as the
ratio v, + o R, remains constant. If the average radial velocity
exceeds v, sin a, the effect will be that the successive particles
of water will reach any point P in the relative path before the
point P reaches the corresponding point p in the absolute path, so
that the curve of the absolute path actually traversed will be
wholly within and on the concave side of the absolute path B p Q,
and will cut the external circumference at an acute angle, the final
absolute velocity being divisible into two components; one at right
angles to the direction of motion, and the other parallel to it in the
direction opposite to that of motion. The final absolute velocity
cannot, however, be much greater than v, sin a, since the radial
velocity must be less than v, sin a sec §, so that the effective power
of the vanes will not be appreciably affected if the average radial
velocity be somewhat greater than v, sin a.

If, on the contrary, the average radial velocity be less, the
successive particles of water will not reach any point P in the
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relative path till after the point P has reached the corresponding
point p in the absolute path, so that the curve of the absolute path
actually traversed will lie wholly without on the convex side of
the absolute path B p Q, and will cut the external circumference
at an acute angle, the final absolute velocity being divisible into
two components; one at right angles to the direction of motion,
and the other parallel to it in the same direction.

If the final absolute velocity does not differ much from v, sin a,
the effective power developed will not be appreciably affected, but
it will be more injuriously affected by a decrease in the average
radial velocity than by an increase, because the final absolute
velocity in the former case may be greater than in the latter, al-
though the loss of velocity due to friction has been greater for the
following reason :—If the average radial velocity be less, the angle
between the tangent to the absolute path and the corresponding
radius vector will never pass through the value zero, and if v,, ¢,
be the values of the velocity parallel to the initial velocity v, sin a
and this angle at the point of discharge, the final absolute
velocity will be equal to v, sec (6, + ¢,). If, on the contrary, the
average radial velocity be greater than v, sin a, the angle ¢ will

through the value zero before the point of discharge, and
the final absolute velocity will be equal to v, sec (6,— ¢,), where,
in addition, 6, is less than in the first case, so that, although v,
in the latter is greater than v, in the former, v, sec (6, — ¢,) in
the latter case may be less than v, sec (6, + ¢,) in the former,
and the ratio effective power < power lost must be greater in
the latter case, since there has been less loss due to friction. For
this last reason, the efficiency may be greater than when the radial
velocity is constant and equal to v, sin a: such excess, however,
can only equal some fraction of % per cent.

We have now on these data to determine the relations which
subsist between the different elements of the turbine. The angle
o is perfectly abitrary. The less it is the greater will be the
efficiency of the turbine, but the efficiency which, on comparing
the two relative efficiencies, may be taken to be proportional to
cos %a, is increased very little by a considerable change in the
value of a, whilst the discharging power varies directly as the
circular measure of a, since sin a = a nearly. Thus the dis-
charging power of a turbine in which the angle a is equal to 10°
is only about half that of a turbine of the same size in which the
angle a is equal to 20°, whilst the efficiency of the latter would be
to-that of the former as cos® 20 : cos® 10°=89:97. The area of dis-
charge from the guide-blade chamber at right angles to the gunide
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blades is equal to n A sin a, where n is the number of openings
between the guide blades. If therefore ¢ be the co-efficient of
contraction, we must have
cv,nAsina = Q.

Before we can ascertain the value of A in termsof R, and D, it will
be necessary to investigate the mode of constructing the guide
blades, since A is equal to the area of the jet, as it issues from the
guide blades, multiplied by cosec a.

Through O draw O D at right angles to A B, meeting A B in D.
Then will OD be equal to R, cos a, and DB to R, sin a. With
centre O and radii equal to R, cos a and R, sin a respectively draw
two circles. The tangent to any guide blade at the point where
it cuts the outer circumference of the guide blade chamber will
touch the circumference of the circle radius R, cos a, and the
normal to the guide blade at the same point will touch the circum-
ference of the circle radius R, sin a.

Divide the circumference of the circle radius R, sin a into n
equal divisions at the points b, b', b”, &c.; with each of these points
as centre and radius R, cos a describe a succession of circular arcs
cutting the outer circumference of the guide-blade chamber in a
succession of points, B, B, B”, &c. The angle between the tangents
to the arc and the circumference at any of the points B, B', B”, &e.,
will be equal to the angle a, therefore these arcs will be of a
suitable shape for the guide hlades close to the point of discharge.
Now the maximum distance between two such consecutive circular
arcs occurs when their radii coincide, and is equal to %ﬂﬁ,

and this distance gradually decreases as their radii diverge from
coincidence, therefore the maximum length of the arc suitable for
a guide blade corresponds with the position of the describing
radius where it passes through the points where the preceding arc
cuts the outer circumference of the guide-blade chamber, since the
area between two consecutive guide blades must be a minimum at
the point of discharge. It is evident, however, that the guide
blades must not terminate at this point, since they must overlap
each other in order to give the proper direction to the jet. Beyond
this point, towards the receiving side of the guide-blade chamber,
the guide blades may be of any form, so long as they comply with
the conditions that the sectional area between them at right angles
to the direction of flow continually increases from the discharging-
towards the receiving side, and that the change of motion is

gradual. If » be not less than ?%9, a suitable radius for the
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receiving side-of the guide-blade chamber will be R, (2 cos a—1),
so that the cylinder to which the initial tangents to the guide
blades are tangential will bisect the width of the guide-blade
chamber. With centre O, and any radius between R, (2 cos a—1)
and R, sin «, describe a circle. With successive centres o’ 0", &c.,
where the radii 0' B, b’ B”, &c., cut the circumference of this circle,
and radius equal to R, cos a — b’ o' complete the arcs of the guide
blades until they meet the circumference, radius R, (2 cos a — 1).
The arcs so drawn will form suitable guide blades. Since the
angle between any two consecutive radii, which describe the arcs
on the discharging side, when they both pass through the same
point, where a guide blade meets the discharging side of the guide-
blade chamber, is so small that we may look upon the two as
approximately coinciding, the minimum distance between the
centres of two consecutive guide blades will be equal to 27 R, sina

approximately, and A will be equal to ZLE-‘—&, less the thickness

of a guide blade multiplied by cosec «.

In outward-flow turbines the direction of the flow of the water
in the supply chamber is parallel to the axis of revolution. Hence,
if R’ be the radius of the axis, or of any casing surrounding it, and
R =R, (2 cos a — 1) represent the inner radius of the guide-blade
chamber, we must have

= (R — R0 = Q,

where v is the velocity of a.pproaéh parallel fo the axis, and there-
fore at right angles to the direction of the jet. We may therefore
look upon the head due to this velocity as almost wholly lost, and
the radius R must be so chosen as to reduce this loss to a minimum.
Let the loss of head due to this cause be equal to p per cent. of the
whole head. Then, on the supposition that the head due to the
velocity of approach parallel to the axis is wholly lost, we shall
have

_2pgH

- o100

2

If p' represent the percentage of other losses of head due to friction
in the supply pipes, &c., the nett head at the guide blades will be
equal to

Ha_p+ﬂ

100 /
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and the discharge will be equal to

627 B, Dysina —ntD) A/ 29h(1 Pl'*(;(f’
we must therefore have

= (R? — R \/Z{goﬂ —c(@wR,Dsina—ntD)) x

Pty
A 2gm(1 - PL

Now the sum of the areas # ¢ D, is very little removed from the
area = R'%, and we shall obtain a value for R on the safe side, if we

neglect the loss of head 4 l_ic—;:—- on the right-hand side of the
equation. We shall then get

20¢D, sina
VP (2cosa— 1)
For the sake of numerical illustration, we may take a = 20° and
¢ = *8, and we get

l=

D, = ' 2R, when p = 2
D,=-28R, whenp=4
D, =-42R, whenp=29
D, =-57R, whenp =16

The shrouding which covers the axis is frequently curved so as to
direct the water towards the guide blades, thereby utilising a little
of the velocity of approach in the guide-blade chamber. In order
that the velocity parallel to the axis may remain constant, it is
evident that the annular areas between the inner side of the guide-
blade chamber and outer face of the shrouding must vary as the
distance of each horizontal section from the bottom of the guide-
blade chamber, since the quantity of water varies as that distance.
Therefore if p be any intermediate radius of the shrouding, and d
any intermediate depth, we must have

R?(2co8a—1)"=p? d
R?(2cosa—1*—=R? ~ D/
Values of p determined from this would be maximum values, and
therefore give the limiting position of the curve of intersection of a

vertical plane through the axis with the surface of the shrouding.
The curve so determined would not, however, be a suitable one,
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because its convexity is towards the guide-blade chamber, and it
does not meet the horizontal casing at the bottom of the guide-
blade chamber tangentially. A suitable curve of intersection
between the shrouding and a vertical plane through the axis is a
parabola, whose vertex coincides with the intersection of the inner
face of the guide-blade chamber and the shrouding, whose
equation is
¥ = {B,(oosa 1) — R} 5,
1

where
y=R;(2c08a—1)—p.

‘We have now to determine the elements of the absolute path, in
in terms of R, and R, and the angle a.

Fia. 7.
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Since (Fig. 7) T is the intersection of the tangents to the curve
of the absolute path at the points B and Q, where it cuts the
receiving and discharging side of the drum, BT = T Q, also

sin BOT

BT = BO SnBTO
R, sin 8
008 (a + &)

QT =QO0—0T =QO — BOsnOBT

“snBTO
R, cosa

cos (a -+ 8)

R, (cos a4 sin 8) = Ry cos (a + 8).

=R, -

therefore

If we put 8=12'-¢

Rotang-g-n,

&1

we get

R,+ R, tang
é

1—tan§

®
1+t&l‘l'2-

tan

»o| O

_ (R(. -R)( —tan%)
) (Ro-[- R)(1 +tan%>

also
BTO OBsmBOTcotB—'g—O

2 sin BT O

OBsmBOT
. ., BTO

O'B = BT cot

2 gin ?

therefore
R, sind R, sind

2 sin <1r_ a+8> 1 —sin (a+3)

r =
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The best values of the ratios R, =~ R, and v R, = v will be inves-
tigated after the rules for designing inward and parallel flow
turbines have been given.

d"

Figs. 8 and 9 represent part of a section of an inward-flow turbine.
O is the centre of the axis of the shaft. In these turbines the
water flows inwards from a supply chamber surrounding the outer
periphery of the guide-blade chamber, and strikes the vanes of the
revolving drum in the direction A B, indicated by the arrow,
making the angle A B C with the direction of motion of the vanes.
B C being a tangent to the common circumference of the guide-
blade chamber, and the revolving drum and A B a tangent to a
guide blade at a point where it meets that circumference, so that
ABC is equal to the angle a. From the centre O draw OT,
meeting A B produced in the point T, and in O T take the point Q,
such that TQ=BT. Draw BO',TO’ perpendicular to ABand T Q
respectively intersecting each other in the point O'. With centre
O’ and radius O’ B = O’ Q describe the arc BQ. If the vane be so
designed that B Q represents the absolute path, the conditions laid
down will manifestly have been complied with, since the water
moves initially tangentially to the absolute path, and finally radi-
ally at right angles to the direction of motion. Whilst in outward-
flow turbines the radius vector of the absolute path always lies
between the tangent and a line parallel to the initial radius
through the whole length of the absolute path, in inward-flow
turbines the line parallel to the initial radius lies between the
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radius vector and the tangent to the absolute path up to the point
where that tangent becomes parallel to the initial radius vector,
and afterwards the tangent lies between the radius vector and the
parallel line, therefore the angle between the tangent and the
initial radius will be equal to ¢ — 6 up to that point, and
afterwards to 6 — ¢.
_ If, therefore, v, sin a remained constant, leaving friction and cur-
vature of absolute path out of consideration, up to the point where
0 = ¢, the radial velocity at any point between B and that point
would be equal to v, sin a sec (¢ — ) cos ¢, which is always less
than v, sin a sec 6, since cos 6 cos ¢ is less than cos (¢ —6). Hence
it is evident that up to this point the vane cannot be designed on
the supposition that the radial velocity is constant and equal to
v, sin a, since it will be still further diminished by friction. At
this point the absolute velocity is parallel and equal to v, sin a.

After passing this point, the absolute velocity must decrease, and
therefore always be less than v, sin a, so that the velocity parallel
to the initial radius must decrease at a much greater rate, since it
is equal to the absolute velocity multiplied by cos (6 — ¢). Since
no loss of velocity parallel to the initial radius is assumed to
accrue from friction or curvature of absolute path, it follows that
the head due to the velocity of this component lost after the abso-
lute velocity has become equal to v, 8in « must have been expended
in doing work, and there will be a slight increase in the efficiency
of the machine due to the head so lost.

At the point, therefore, where the absolute is parallel to the
initial radial velocity, we may look upon the jet moving along the
absolute path as a jet striking the vane in a direction inclined to

the direction of motion at an angle g— 0. If, therefore, we

resolve the absolute velocity in two directions, radial and tan-
gential, we shall have radial velocity v, sin a cos 6§, and tangential
equal to v, sin a 8sin §. Up to the point where the absolute ve-
locity becomes parallel and equal to the initial radial velocity
v, sin a cos 6, the radial velocity will be less than the initial
radial velocity, just as in the first part of the path and the tan-
gential velocity v, sin a sin 6 having been wholly destroyed, there
will have been effective work done in proportion to the head

v,? 8in %z sin %0
29

the radius vector at this point to the initial radius O B, we may

resolve the absolute velocity v, sin a cos 6 into two components

lost, viz.,

Similarly, if 6' be the inclination of



46 PRINCIPLES OF CONSTRUCTION AND

v, 8in a cos 6 cos (¢ — 6) radial and », sin a cos @ sin (¢ — 6)
tangential and so on ad infinitum.

Thus we see that, whereas in outward-flow turbines the only
difficulty we have to contend with is the securing of proper con-
secutive sectional areas in the passages between the guide blades,
a difficulty easily overcome, in inward-flow turbines the difficulty
to be overcome is the determination of the proper form of the
vane. The following consideration will, however, much simplify
the problem we have to solve. At the point where the absolute
velocity becomes parallel and equal to the component v, sin @,
the angle @ will always be less than 45° whatever may be the

2 o3 in 2
value of the ratio R4 R,, and therefore the head lost ﬁ--s—li;;;n—q

v,? sin %a sin’—
will never be greater than 5 4, which for a = 20° a
g

maximum value is less than one per cent..of the whole head,
therefore we may neglect the effect of the jet during the second
and succeeding stages without affecting in any appreciable degree
the total efficiency, and the vane must be constructed as follows.

Through O' draw O'S parallel to C B, the initial tangent at B
cutting the radius O B in b, divide the space Bb into a succession
of equal intervals ¢, ¢. Draw tp, ¢ p' at right angles to O B,
meeting the absolute path in the points p, p’. Describe the arcs
pP,p' P, &c. Then if the lengths P p, P’ p' be so determined that
the vane sweeps on the arcs P p, P’ p', &c., whilst the jet moves
parallel to the initial radius through the spaces B ¢, B¢, &c., it is
evident that the locus of the points P, P, &c., will represent the
correct shape of the vane corresponding to the absolute path B Q.
Since it is impossible to ascertain either the total loss of velocity
parallel to B O or the rate of loss, we can only design the vane on
the supposition that the component of the velocity parallel to B O,
the initial radius remains constant. The best angular velocity
will be therefore somewhat less than the angular velocity on which
the calculations are based, and must be determined subsequently
by actual experiment. Since Bt = OB — Ot = R,— p cos 6, the
equation of relation between the successive arcs P p, &c., and the
corresponding radii vectores through P will be

(B, —pcosf) wp

v, sin a ’
Whilst in the case of outward-flow turbines, the arcual interval
between consecutive vanes increases from the receiving towards

Pp=
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the discharging side, and the areas increase more rapidly than is
necessary to compensate for frictional loss of radial velocity, which
also, leaving friction out of consideration, increases from the re-
ceiving towards the discharging side; in the case of inward-flow
turbines, not only does the radial velocity decrease, but the areas
at right angles to it, when the depth of the revolving drum
parallel to the axis remains constant. It is evident, therefore,
that the depth must increase from the receiving towards the dis-
charging side. Since the area at right angles to the direction of

motion at any point in the absolute path is equal to 27; p d,

leaving the thickness of the vane out of consideration, the projec-
tion of this area on a plane at right angles to its initial radius

andcose'a 27pdcost

will lie between nd m , where &' is the
angle between the initial radius O B and the radius vector
through the point where the arc radius p cuts the preceding vane.
Now the angle 6 increases from the value zero up to 8, whilst ¢
360°
n
zero and then begins to increase; till it equals zero; or finally

o}

decreases from the value

till it passes through the values

reaches a minimum value according as

a is less, equal to, or

greater than 8. Up to the point, then, where 6=¢', the depths
must be chosen so that

d= D, R, sec 0"
P
and after this point '
d= D, R, sec .
P

The areas will be somewhat larger than is necessary, if v, sin a
remain constant, and therefore some allowance will have been
made for friction. The simplest way, and one equally efficient,
would be to make the whole depth constant and equal to
R, D, secd
R,
chamber.
Another artifice adopted to overcome this difficulty is to make
every alternate vane half the full length. Since the actual in-
crease of area, however, is small, and only equal to the tan-
gential component of the thickness of the vane, it is evident

, D, in this case being the depth of the guide-blade
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that this expedient to prevent loss of initial velocity can only succeed
by admitting of a greater final absolute velocity of discharge, and
must therefore be accompanied by a diminution of efficiency.

Since the issuing water leaves the turbine parallel to the axis,
the internal diameter of the revolving drum must be determined
in the same way as the internal diameter of the guide-blade
chamber in an outward-flow turbine. Since, however, the water
escapes both ways, upwards and downwards, it is evident that the
annular area need only be half the magnitude, or the radius of the
discharging side of an inward-flow turbine need not exceed the
radius of the receiving side of the guide-blade chamber of an out-
ward-flow turbine divided by /2.

After escaping from this annular space, the issuing water flows
over and under the turbine casing. Hence, the greater the height
of the surface of the tail water above the top of the turbine the
less will be the loss of head due to the velocity of the tail water.
It is evident also that the area of the tail water below the tur-
bine ought to be equal to the area above it, and the sum of
the two to the whole area of the tail water in the case of an
outward-flow turbine, so that the depth of the tail water in the
former case in the turbine pit itself must exceed that in the
latter by the depth of the casing of the inward-flow turbine.

The elements of the absolute path are determined as follows:

In Fig. 8, since BT, T Q, are the tangents to the absolute path
at B and Q, we must have BT =Q T, also

BOsinBOT R, sind

BT = smBTO  cos(a—2)
BOsinOBT
TQ=TO0-0Q=—gvo —0Q
_ Rlcosa. R
“c8(a—20) °

R, (cos a — sin §) = Ry cos (a — &)
putting § = ;—r— ¢, and reducing we get

- than-;--l-Ro
tan§=——
,-|-Rotan§
s (R - R,)(1 — tan 2)
tan 3=

(R +R) (+ ton 2)



EFFICIENCY OF WATER-WHEELS. 49

also
O'B=BTtan 2 ;‘,0
- OBsinBOT tan B—';‘(—)
= sinBTO N
or
R, sin

T i ein(a=8)

The radius O Q' of the cylinder, which intersects the vanes at the
point where the absolute velocity is parallel to the initial radial
velocity, is thus determined. .Let it be designated by the symbol
R, then

R =0Q = /00408

Ob =R, —rcosa

bS

R,o

r—rsina

VR?>+2r2 =27 (R, cosa+ r sina)

Fiac. 9.!

The arrangement for the guide blades in inward-flow turbines
is exceedingly simple. The very best possible form consists of
straight vanes cutting the external circumference of the revolving
drum at the constant angle a. These guide blades will all be
tangents to a circle centre O and radius equal to R, cos a. Let
the guide blade through B meet the circumference of the circle

! For explanation of Fig. 9 see pp. 63 and 64.
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radius R, cos a in'B’. Set off from B and B’ equal angular inter-
vals on their respective circumferences, each subtending the angle
360°

at the centre. Lines passing through each successive

pair of points BB', B, B';, &c., will give the proper direction for
the guide blades.

As in the case of outward-flow turbines, each guide blade must
be at least sufficiently long to cut the normal from O through the
point where the preceding guide blade cuts the inner petiphery of
the guide-blade chamber. This, however, would not be suffi-
ciently long to give the proper direction to the jet, unless the
direction of the approaching water were made to converge towards
parallelism with that of the jet. The radius of the circumference
in which the successive guide blades meet the above normals is
360°

n
radius through the point where a guide blade meets the circle
radius R, cos a, and the radius through the point, where the pre-
ceding guide blade cuts the circle radius R, is equal to o° plus the
angle subtended by ome of the openings. Since the turbine is
wholly buried under the tail race, and the water issues both above
and below the turbine, the plane of the direction of the velocity of
approach must always be at right angles to the axis. If, in ad-
dition, that direction is also radial, the radius of the external cir-
cumference of the guide-blade -chamber must be greater than R,

equal to R, cos a sec ( + a), because the angle between the

(e}
cos a sec (36: + a). Inward-flow turbines have, however,

an advantage over outward-flow turbines in this respect. The
supply chamber may be so arranged that the direction of the
velocity of approach gradually converges to parallelism with the
direction of the jet, viz.,, by making the top and bottom flush
with the top and bottom of the gnide-blade chamber, and the other
parallel to the axis, and gradually converging towards the external
circumference of the guide-blade chamber till it ultimately meets
a guide blade tangentially.

Fig. 10 is a horizontal section through such a turbine with the
vanes omitted. The external casing is a spiral, determined by the
condition that the interval between the casing and the supply
chamber measured along a radius vector shall be to the fixed
initial interval in the ratio of the number of intervening openings
in the guide-blade chamber to unity. Produce the radius O Bb,
which passes through the points B, b, where two successive guide
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blades severally meet the discharging and receiving side of the
guide-blade chamber, till it meets the next guide blade but one
likewise produced in . Then b b’ will be a suitable initial in-

terval. The radius O b’ is equal to R, cos a sec (%) +a); there-

fore bb' = R, cosa {sec(?-l-a) - sec(3(i'0 +a>}. Now the

equation to the spiral must be

p=ab,
and the value of a must be so determined, that, for a certain
value of 6

R,oOSasec(zi—O-j-a) =af

and

R, oosa{<n+1)sec(72°+a)-»sec ("?+)} —a (0 27);

whence the value of o is
nR, oosa{sec + ) (360+ )}
and the value of 6 correspondmg to the radius vector O Bbd' is

(21
ren (2242 - moeo (B4 )

The tangent of the angle between the radius vector and the
tangent to the spiral at any point is

do

¥y

or the tangent is equal to the circular measure of the angle swept

out by the radius vector; therefore the spiral, whose equation is

given above, will not meet the guide blade tangentially. The two

must be joined by a short circular curve, and the next guide blade

must be diminished in length to make up for this diminution on

the opening b b’. The spiral might have been designed so as to

meet this guide blade tangentially, but the increase of the sectional
areas would be too great to admit of the use of such a spiral.

Since the angle between the radius vector and the tangent of
the spiral increases with 6, the areas also at right angles to direc-
tion of the water increase more rapidly than in the ratio of the

E 2

=L_y
a ’
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number of intervening guide blades to unity, so that the velocity
in the supply chamber gradually increases from the penstock up to
the last orifice in the guide-blade chamber, by this means insuring
the same value of the initial velocity v, at every office.

Through the point p where the first guide blade b'p meets the
circle radius R, cos a draw the radius vector O p P, meeting the
spiral in P. Draw P N tangentially to the spiral. From the point
M in the guide blade p b’ produced, draw M N parallel to OP and
meeting PN in N.

A vertical section through M N will form a suitable orifice to the
supply chamber.

Fia. 10.

Fig. 11 represents the development of part of a section of a
parallel-flow turbine made by a cylinder concentric with the axis.
In this case the component of the velocity at right angles to the
direction of motion at any point of the absolute path is always
parallel to the initial component in the same direction, that is
parallel to the axis of the turbine, consequently the tangent to the
absolute path at the discharging side must be parallel to the axis.

Let Q be the point of discharge. Draw QT parallel to the axis
meeting A B, the tangent to the guide blade produced in T. Then
the depth must be determined by the condition

' QT =BT.
Draw BO, QO at right angles to BT, Q T, respectively, then will
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O be the centre of the absolute path. Draw BD at right angles
to Q O meeting Q O in D, then will BD represent the depth D of
the turbine, and we shall have

‘OB=DBsec OBD
or r= Dseca;
also if p be the radius of the intersecting cylinder, and 8§ the
circular measure of the angle between two vertical planes through
the axis and the points B and Q, we shall have

_ (1 —=sing)D

T pcosa ’
Unless, therefore, the ratio D--p be constant, or the depth in-
crease from the inner towards the outer circumference, the angle &
will not be constant, and if D varies r will also vary, and con-
sequently the curve of the absolute path will vary.

In the curve to the absolute path B Q, take successive points p, p'
at equal intervals, and draw pb P, p'b’' P’ parallel to the direction
of motion, meeting BD in bd and the relative path in P, P’ re-
spectively. If then the initial velocity, v, sin a, remain constant
we must have

p - Bbep
v, 8ina
_ dop
| = oeing
where d is the depth from the receiving side of corresponding
points in the absolute and relative path.

Now the value of p varies from R, to R,, therefore theoretically,
whether D, and consequently the radius of the absolute path, re-
main constant or not, the section of the vane ought to vary accord-
ingly. In parallel-flow turbines, then, we have two difficulties to
contend with—the impossibility of ascertaining the loss due to

Fia. 11.

Q D o

friction of the velocity parallel to the axis, and the complication
due to the varying value of the radius. If, however, the vane be
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designed to suit the extreme section R, the length of time it takes
at any other section to describe the interval o (Ry — p) will com-
pensate, and may more than compensate, as p approaches the value
R, for the loss in the component v, sin a due to friction; so that
for some intermediate value of p the shape of the vane will be
such as to cause the water to move in the assigned absolute path.
Owing likewise to this variation in the value of the radius the
ratio velocity of vane = component v, cos a of the velocity of
the jet varies unless the value of a varies also; but if a varies so as
to make ratio w p =~ v, cos a constant, the component parallel to the
axis will vary; so that we cannot by varying the angle o design a
vane of uniform section whose initial tangent shall at every section
be parallel to the relative path. The only way to get over this
difficulty is to make the value of the ratio R, R, so small that
this variation will not appreciably affect the efficiency. It has
been shown in Part I. that a variation of 10 per cent. either way,
leaving curvature of vane out of consideration, does not materially
diminish the efficiency, and therefore we ought to have

R—‘-;—R° not less than R, — %‘;
or R, not greater than 1°25 R,.
Since the initial velocity v, sin o, parallel to the axis, diminishes
by friction, it is evident that the successive areas made by planes
at right angles to the axis ought to increase from the receiving
towards the discharging side. This may be done by gradually
increasing the difference between R, and R,, or more simply by
making the width of the guide-blade chamber less than that of the

vane chamber.
~ The form of the guide blades is very simple. Let lines parallel
to the axis through consecutive points B', B”, &c., where the guide
blades meet the receiving side of the revolving drum.cut the pre-
ceding straight portion of the guide blade in the points A, A’, &c.
Produce B” A’ till it meets B A in ¢, and in B"” ¢ produced take
the point d such that d¢ = A¢. Through d draw d O parallel to
B C, meeting the perpendicular from A on B A in O. With centre
O and radius O A describe the arc Ad. Then will BAd be a
suitable shape for the guide blade. The depth of the guide-blade
chamber is equal to -
dc+e¢B’' =Ac4cB”
= BB'(sec a4 2 tan o)
_27wp(seca-2tana)
n :
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In' theory, therefore, the guide-blade chamber ought to vary in
depth to suit the varying value of p. So long, however, as the
successive points B’, B", &c., lie between the successive points B, B’,
&c., and the verticals through the successive points A, A’, &c., the
jet will issue with its proper direction.- This condition will be
satisfied if we make the guide blades suit the external section of
the guide-blade chamber. The great defect in parallel-flow tur-
bines is that the vertical planes parallel to the direction of the jet
do not cut the vanes parallel to the direction of motion, so that the
actual absolute path does not coincide with B Q, but corresponds
with the intersection of the vane made by a vertical plane tangential
to the direction of motion at the point B, and is therefore elliptic.
There will therefore be, in addition to the final velocity v, sin a,,
leaving friction out of consideration, a small component of velocity
at right angles to the direction of motion in a horizontal plane at
the point Q.

We have now to consider the best values of the ratlo, Ro =R, in
outward and inward-flow turbines and of the depth D in parallel- '
flow turbines.

We may consider the question in two ways—

1st. What must this relation be in order that the whole head lost
/in passing through the turbine may be a maximum.

2nd. What must this relation be in order that the ratio, power
developed divided by the power lost, may be a maximum.

In outward-flow turbines, constructed in accordance with the rules
previously laid down, the final absolute velocity, leaving friction out
of consideration, is equal to v, sin a sec 8, and therefore the head lost
is equal to n? (1 = sin % sec *3) , and therefore the less § the greater
the whole head lost. The variation in the value of v, sin a sec 8
for all values of & less than a is so small that the head lost will not
be affected by making the value of w less than that due to this
value of 8 which is given by the equation

(;L+1) (1 + tan )

14 tan '32

or po=——
1 --2tan——tan
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If a = 20° the head lost in passing through the turbine will be

. 2
8; ;‘ and the value of 4 1+67. Ifa = 10° the head lost will be
96 v,?
29
it is evident that no appreciable increase of efficiency could have
arisen from making the final tangent to the absolute path parallel
to the direction of the initial radials component v, sin a, whilst the
solution would have been complicated by the radial velocity be-
coming, as in the case of inward-flow turbines, less than v, sin a.
In inward-flow turbines, constructed in accordance with the
principles already laid down, the final absolute velocity, leaving
friction out of consideration, is equal to v, sin a, and therefore the
v,2 cos %a
29
If, therefore, in this case the value of 8§ be equal to a, since the
same equation of relation exists between a and §, the head lost, if

and the value of u 1°24. Since sin a = tan a very nearly,

head lost to , which is the same for all values of the ratio.

. 2
a = 20° will be 52—;“— and 167 the value of u. If a = 10° the
. *97 v,2
head lost will be and 1-24 the value of u.

29

In inward-flow turbines, since the absolute velocity of the parts
of the vane which are nearer the centre are less than those more
remote, if the vanes are so designed that the absolute path passes
through the centre of the axis, there would be many changes of
curvature in the relative path, the points of contrary flexure corre-
sponding with those of the absolute path at which the absolute
velocity is parallel to the successive initial radii already described.
It will not, however, add appreciably to the efficiency to carry the
vane beyond the first point of contrary flexure. This point will -
be further discussed during the investigation of the value of the
ratio R, + Ry, which makes the ratio effective power - power lost
a maximum.

In parallel-flow turbines vertical planes parallel to the direction
of motion diverge from parallelism with the corresponding initial
plane, and the absolute velocity may be resolved into three com-
ponents: 1st, parallel to the axis, which is supposed to remain
constant and equal to v, sin a. 2nd, parallel to the direction of
motion. 3rd, radial. The head due to this last component is
wholly lost. Since the angle between the final and initial tangent
planes is equal to the angle & between the radii passing through



EFFICIENCY OF WATER WHEELS. 57

Band Q, it is evident that the smaller this angle is the less will
be the loss of head due to this cause. Now, since § is small, we
have '
arcDQ
Tadius
_ D(seca — tana)
P

ptandcosa

1 —sina ’
If a = 20° and & = 10° we shall have

D=-25 pP-
If a = 10° and 8 = 10° we shall have
D= -2p.

Therefore, theoretically, the depth ought to increase from the
inner to the outer circumference of the vane chamber. All the
conditions will, however, be satisfied if the depth remain constant
and equal to 25 R, or ‘2 R, according as a is equal to 20° or 10°.

We now come to the next point, viz., what value of the ratio u
must be adopted in order that the ratio effective power -~ power
lost may be a maximum, '

Let (Fig. 7) p,p' be contiguous points in the curve of the absolute
" path of an outward-flow turbine at the distances p and p+8p
from the axis respectively. Draw the arcs p P, p' P’ meeting the
relative path in the points P and P’ respectively. Produce O p till
it meets the arc p’' P’ in r and O P till it meets p’' P’ or p’' P’ pro-
duced in 7. From r along the arc p’ P’ measure off r ¢ equal to# P,
the point ¢ being remote from or adjacent to the point p’ according
a8 O P produced cuts p' P’ or p’ P' produced in . Then the angle
gpr is evidently equal to the angle P' P+, which the radius vector
OP makes with the chord PP’ of the relative path. When §p is
indefinitely diminished, this angle is equal to the angle between
the tangent at P and the radius vector O P. Similarly the angle
rpp' is ultimately equal to the angle between the radius vector O p
and the tangent to the absolute path at p. Therefore the angle
g pp’ will ultimately be equal to the complement of the angle
between the direction of the motion of the water at the point p
and the normal to the vane when the point P of the relative path
coincides with the point p of the absolute path. Hence if we know
the velocity of the water and that of the element P P’ of the vane
at right angles to the chord P P’, we can ascertain the normal
moving force exerted per second on this element of the vane, and
therefore its component parallel to the direction of motion, which,

tan § =

or D=
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multiplied by the velocity of the point P will give the effective
work done on this element, when § p is indefinitely diminished,
and the sum of these acting at each point of the vane will repre-
sent the whole work per second done by the water in passing
through the turbine. Let

£ qpr be denoted by '
Lrpp o @

then the complement of the angle between the direction of the
water and the normal to the vane will be equal to ¢’ + ' according
as O P meets p' P’ or p' P’ produced in r',

Since the radial velocity is assumed to be constant and equal to
the initial radial velocity », sin a, the absolute velocity at any
point will be equal to

v, sin a sec ¢,
where ¢ is the angle between the radius vector and the tangent
to the absolute path. Also the angle between the normal to the
chord P P’ and the direction of whirl is equal to the angle between
the chord and the radius vector =+ PP’ = ¢ pr = ¢/, and therefore
the normal moving force exerted on the element I> P’ per second
will be equal to

V?V {v,sinaseccpsin (¢ x¢) —wpcosw'}

where W is the weight of water discharged per second. This
multiplied by cos ¢/ will be equal to the moving force exerted in
direction of motion, and therefore the work done per second in
direction of motion will be equal to

g {vl sin a sec ¢ 8in (¢’ + ¢') — wp cos y’ }wp cos Y/,

and the summation of these elements from the value R, to R, of p
will give the total work done per second by the water. In the
caso of the absolute path, the acute angle between the tangent and
the radius vector never passes through the value zero until it
attains its ultimate value. The ultimate value of the angle ¢'is
therefore equal to ¢. On the contrary, in the case of the relative
path, the angle between the tangent and the radius vector does
pass through the value zero, and after passing through the value
zero, since it is always weasured on the same side of the tangent,
this angle will be equal to the supplement of the acute angle, which
the radius vector makes with the tangent. This acute angle is in
all cases equal to the ultimate value of ¢'. If, therefore, ¢ be the
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angle between the tangent to the relative path and the radius
vector, we shall have

sin (¢ — ) = sin (¢ — ¥)

sin (¢' + ¢') = sin (¢ + 180° — ) = —sin (¢ — ¢);
sin (¢ — ) being negative when ¢ is remote from p'.

Although the ultimate value of ¢’ and ' are equal respectively
to ¢ and ¢, or 180° — ¢, we cannot substitute these values in the
expression for the work done per second on any element, since
this would simply make it vanish.

The value above given has been investigated for the sake of
illustrating the exact theoretical principles by means of which the
problem must be solved. We may arrive at an approxlmate
solution by the following artifice.

Let ¢, ¢’ and ¢, ¢’ be the angles between the radii vectores and
the tangents to the absolute and relative paths respectively, corre-
sponding to the values p and p 4 8p of the radii vectores. The
total absolute velocity at each point will be equal to v, sin a sec ¢,
and v, sin a sec ¢' respectively, and when 8 p is indefinitely dimi-
nished, we may consider that the angle between the tangents to the
absolute and relative paths at the point, whose radius vector is
p—+ 8p, is equal to the corresponding angle at the point whose
radius vector is p, or to ¢ — ¢, and therefore the velocity normal
to the relative path at the two instants will be equal to v, sin a sec
¢ sin (¢ — ¢) and v, sin a sec ¢' sin (¢ — ) respectively, and the
 difference between these, viz.,

t v, sinasin(p — ) {sec ¢ — sec ¢'}
will represent the velocity destroyed normally to the vane, which
is the only component that has any effect upon the motion, the
positive sign denoting a motion towards, the negative from the
centre. Therefore the work done in direction of motion will be
equal to

V?Vvl sin a sin (¢ — ) {sec ¢ — sec ¢'} wpcos y,

cos ¢ being negative, when negative sign comes before sin (¢ — ).
If we take O for origin and O O’ for initial line, and denote the
angle O’ O p by 6, we shall have

002=0'Q*+0Q*=r4R
O'p*=00"+40p*—200.0pcos 0;
therefore the cquation to the absolute path will be
PP =2pa PP+ R cos 6+ R? = O;

and
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also if & be equal to the angle O'O P, we shall have the arc

wp(p—R))

pP =p(6—¢). Since pP is also equal to o, sina

—, we get
the equation of relation :

0—6 = w(P— l)

v,8ina ’
also
tan¢=P"l—o—~/r’ﬁozmo_p
dp /P R2sinf
— Ry - ¢
_J4p’r’—(Ro’—p’)’,
tan‘p:pda' R - p? __ep
dp JEP P = (B - ) v,8ina’
therefore
J— 2pr
e N e = e (Ba = )
also

seod = _2(p+3p)r .

JEG+ 8 = (Ri= (o Fopy}
therefore approximately, having regard to the double sine, of the
root:

2rdp

VAP - B - )
Therefore the whole work done per second will be equal to

sec ¢ — sec ¢’ =

. Ro
2Wo, rsina sin (¢ —yY)wpcosydp

g y JAipr —(Ri— P
Now
2 —
sin ¢ = tan ¢ _Rj=p ,
. J1+Ftan’g 2pr
similarly, )
siny = (R — p*) v, sina — wp_«'/4p’r’ — (R, — p?)?
Ju ’
where

u=4p°r’(v,’sin2a+m2p2)—w’pe(R ?—p%)?— 20,8ina. o p(Re® = p?)
X o 4p " — (R = p)?
v 8in a 4/ 4p’ 7 — (R} -—p)
Ju

cos Y =
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Therefore
o {4p2r — (By® — p")’}
2r/u
Therefore the whole work done will be equal to
Ro
Wo?ol2sina (“p{4p?r? — (R — p?)’'}dp
g ¥ u '

sin (¢ — y) =

The expression just found is not integrable. If we examine the
values of the separate terms in the numerator and denominator, we
see that for all values of p less than R, the value of the numerator
increases as p increases. In the denmominator the positive term
constantly increases as p increases, whatever may be the value of p.
The first negative term

o' p? (R — p*)
is a maximum when p = % . The second negative term contains

the two variable factors
p (R — p*) and 4/ 4p°r* — (B, — p*)},

of which the first has a maximum value, when p = %, and the

second when p = R, Therefore the value of p which gives a
maximum value to the negative terms lies between R, and

;/E_-%, or we must always have Ry = R, not less than 1:78. We
may therefore fix upon the value of . = 18 as a minimum one for
determining the elements of the absolute path.

Since, however, the absolute velocity towards the end of the
absolute path is very nearly parallel to the radius, and the tangents
to the relative path inclined at very small angles to the direction
of motion, the effective work done towards the end of the absolute
path will be of very little moment, whilst the resistance due to the
friction of the water varies as the square of the external radius
approximately. The external radius of the guide-blade chamber
ought therefore to be less than the radius R, used for determining
the elements of the absolute path.

Let cv, be the absolute velocity corresponding to the value p of
the radius vector, then

oo = 2prv, sina
VAR @ =y
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whence .
pt— 2#’{Ro’+2"(1 —m—:,—a }+R‘ = 0.
If we substitute for r, R,, their values in terms of R, t.e., putting
R, = R, = 1'8, we shall obtain a relation between p and R, in
terms of ¢, to which we may assign any value we choose.
If a = 20° we get 8 = 22°37' 44" r = 1°192 R, and if ¢ = -5,
s0 that the head expended in passing through the turbine is equal

. 2

to 75;' , we shall have outside radius of turbine case equal to
1

1-5 R, nearly.

In the case of inward-flow turbines, the radial velocity being
always less than v, gin a, leaving friction out of consideration, the
assumption that they are equal is not so nearly true as in the case
of outward-flow turbines. It will, however, be sufficiently exact
to determine approximately the best value of the ratio R, =~ R,. On
this assumption, we arrive at exactly the same expression for the
amount of work done in passing over any element of the path, viz.:

v?volsinasin(cﬁ— V) (sec ¢ — sec ¢') w p cO8 Y.

The angle y, as we have already seen, may pass more than once
through the value zero.
The equation to the absolute path referred to origin O and initial
line O O’ will be equal to
pt—2p 4?4 R2cos 0+ Rz = O;
therefore, writing p? — R,? for R,? — p? since p is greater than R,,

do Pz-Ro2
tan =p—— = -
¢ pdp ~/4Pz,.z_(P2_]:'{'02)2
2pr
et ERATERICEN 5
2 _R2
Sin¢= P—2p—?o—;

the negative sign being used before the roots in the case of tan ¢
and sec ¢, and the positive before the root in the case of sin ¢,
because the two former are always negative and the latter always
positive.

The equation of relation between 6 and ¢, the angle between the
initial line and the radius vector to the relative path, is

o (R, —pcosb)

v, 8ina ’

0-0 =
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therefore
wp’sinOd—o
ta,nl)(,- (_1_0_,— d_9+0)p0080_ dp
“Pdp TPdpT v sima v, 8in a
wp? _ P — R

osinay/r’ + R} W 40P~ (p" = Ry)?
iny = 9P ¥ TP = (o7 = Rt — o sina(p? = R) JAF By
pAu
v, sina 4/ P+ Ry o 4p° " — (p" — R),
pou

CoB Y =

where
4= 41 {o® p* 4 v,?sin %a (4 Ry} — o p* (0* — Ry’)’
— 29, 8ina.0(p" = RY) W/ P+ Ry 4p° — (0" — RY)”

Therefore
o {497 = (¢ =~ B)?)
2r/u
2rdp
S = (=R

and expression for the whole effective work done becomes equal to

sin (¢ — y) =

sec ¢ — sec ¢’ =

R
W o o2 sin % y/ P By r{‘t 7 — (o' — R} d
: g o *

If we examine the terms in the denominator, we see that the
values of the negative terms increase as p increases; we cannot,
therefore, as in the case of outward-flow turbines, determine the
best value of the ratio R, =~ R, from an analysis of the value of the
denominator.

The terms in the numerator, whose values depend upon that of .
the ratio R, = Ry, are 4/ 2 + R,? and 4 p? ? — (p* — R,?)? respect-
ively. The maximum value of the second corresponds with the
valuep = 4/ 2134 R,2,and is equal to 472 (r2 4 R,2, and the product
of the two is equal to 4 r? (r2 4 R,?);, the maximum value of which
manifestly corresponds with the maximum value of r. Now r in-
creases as R, decreases, and the value of r is 8 maximum when R,
equals zero, and therefore the curve of the absolute path, when
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prolonged, ought to pass through the centre of the axis. Sinee in
this case R, = o, we have
a
1-— -
tan 5
tan - = ——
a

1+tan-2-

also
. R,seca
- 2

because a perpendicular from O’ on O B bisects O B.

Ifa = 20°
& = 69° 57" 50"
r = 532 R,

the value of p, which makes the numerator a maximum, is there-
fore equal to ‘75 R,,and the radius of the cylinder which passes
through the point, where the absolute velocity is equal and parallel
to v, sin a, is equal to

B (1 —simay = -
——2—+ (1 —sina)® = ‘6 R,.

The actual radial velocity at any point, leaving friction out of
consideration, is equal to the component v, sin « multiplied by the
cosine of the angle between the initial radius vector of the absolute
path and the radius vector at the point (p6), or to v, sin a cos
(6 — a), and therefore the absolute velocity is equal to

v, 8inacos (0 — a)sec ¢ = (%/c(;s—%_% + sin’«:) v, =c.0.
Ifa =20°%p='8R, whenec = *5and p = 67 R, when ¢ = *4.

In the case of parallel-flow turbines, take O’ for origin, and O'B
for initial line. Draw the radii vectores O' p, O' P to the two cor-
responding points p P in the absolute and relative path. Then,
since the equation of the absolute path is

p=1r
the angle ¢ is always equal to ;-r; - therefore the complement of
the angle between the tangent to the absolute path and the normal
to the relative path at any instant is equal to 90° + ¢ — (6 — 6),

or ¢ — (6 —6') — 90°, according as y is less or greater than 90°.
Also the angle between a tangent to the absolute path and the
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direction of the component v, sin a at any point is equal to the
complement of the angle between the latter and the radius
vector through the point of the absolute path referred to, or to

’2:— (6 4 a), and the angle between the direction of motion and

the normal through any point P of the vane is equal to the angle
between the tangent to the vane and the direction of the component
v, gin a, or to ¢+ a4 6, or 180° — (y + a + 6). Therefore the
absolute velocity at any point will be equal to v, sin a cosec (a -+ 6),
and the loss of velocity in passing to the adjacent point (p, 6 + 86)
will be

s {ooseo (a4 6) = coseo (a + 0+ 56)} = LR CED20
when 80 is indefinitely diminished. The component of this at
right angles to the vane is equal to

v, 8in a cos (a - 6) cos y, 8 6
sin’ (a 4 6) !
where y, = ¢ — (6 — ¢') and the component of the last parallel to
the direction of motion is
9, 8in a cos (a - ) cos y, cos (Y +a +0)80
' sin® (a 4 0)
Now the weight of water per second passing over the strip between
the cylinders, whose radii are R and R + 3 R respectively, is equal

Sg , and therefore the whole work done will be equal to
- 1

Wosina [* (Poos(a+ 6)cos g, cos (y+at6)RAGAR
9(R,—Ry) , . sin’ (a - 6) ’

Ry Z-a
2

We have the following relations:
OP=pP4+0p*—2pP.0 psin(a + 6);

also

2R’i”{OOSa — cos (¢1'|'9)}2

v, 8in %a

pP =

The equation to the relative path will therefore be

ﬂ— »® R? . 20R
- 1 +v,’sin’a {eosa — cos (a+6) }* — v, 8ina
X {cos a — cos (a 4 6)} sin (a 4 6); M)

F
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also, if 0’ be the angular co-ordinate 6f the point P, we shall have
pP=0p4+ 0P —-0p.0 Poos(d - ¢),
or

pPtr— 2pr<>os(0—0’)-"’21{”‘2{""“‘—‘30'3(0L-|-9)}2

v’sin’

Theoretically equations (1) and (2) are sufficient to determine p
and ¢/, and therefore tan y in terms of a, 6 and R, and then after
integration we might see if there was any maximum value of r in
terms of a, w, R. If we could ascertain the integral, we should not,
however, obtain results of any value, since the oblique direction
in which the jet leaves the vane, a point of by far the greatest
importance, and which has already been fully discussed, is left out
of consideration. We ought therefore to adhere to the value
previously arrived at, viz.:

D, =D=D, ="25R,.

The next point we have to discuss is the best value of the ratio
o R, <+ v, and in connection with this the probable theoretical
vane efficiency. It is of course impossible to determine’ these
without obtaining the integrals of the expressions for the work
done, but we may arrive at an approximation to the best value by
comparing the case of a turbine vane with that of a vane moving
in a linear direction.

In outward-flow turbines, the tangent of the angle between the
radius vector and the tangent to the relative path is equal to

= 0(2).

Ry? —p? wp
JIpr - (Rp—pyp  oema
Since the first term in this expression is equal to the tangent of
the angle between the radius veotor and the tangent to the absolute
path, the absolute velocity at right angles to the radius vector is
equal to

(Ry? — p?) v, 8in a )
VERP = (Ri- gy

therefore at the point where the tangent to the relative path coin-
cides with the radius vector, the velocity of the vane in the direc-
tion of motion will be equal to the absolute velocity of the water
in the same direction, and therefore no work will be done in
passing over this element of the path.

‘We may therefore look upon the vane of a turbine as divided
into two parts, and by varying the value of v we may divide the
whole head lost between the two halves of the vane in whatever
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proportion we like. The greater the velocity of the vane, the
more nearly will the normal to the first part of the vane be parallel
to the direction of motion, and therefore the greater the ratio
effective power to power lost, but the less the whole power lost,
and vice versd. In the case of the second part of the vane, on the
contrary, the greater the velocity, the greater will be the diver-
gence of the normal to the vane from the direction of motion, and
the less therefore the ratio of the effective power to the whole
power lost, but the greater the whole power lost, and vice versd.
It is evident, then, that the effective power in direction of motion
developed by the last part of the vane will be equal for two values
of o, the smaller value coinciding with the greater amount of head
lost in passing over the first part of the vane. Therefore the
greatest part of the effective work done will be due to the action of
the first part of the vane, and if we determine the value of v 80 as
to make the work done by this a maximum, that value will probably
make the whole work done by the vane a maximum.

Now we may look upon the motion during the interval between
the jet striking the vane and reaching the point where tan y = O
as linear. If the angular velocity be determined so that the
absolute velocity of the vane at the point where tan ¢ = O is
v, coSa

2
be equal to the head lost when a jet strikes a flat vane moving at
its best relative velocity, and this angular velocity will therefore
- probably be that of maxzimum efficiency for the turbine.
If we put

equal to

, the head lost in passing over the first half will

(R — p) v, sina
JEpr 2 — (R? — p?)?
we shall determine the value of p, which makes wp = c.v, cos a,

p being the radius at the point, where tan ¢ = 0. Solving the
equation,

= cv, co8 a,

r*c cot’a R __rcoota
p= 1+c’pot’a+ ° V1 deot’a
when a = 10° 8 = 26° 57" 40", r = 11372 R, and
PR 0 PP . LI
R, 14 32-163 ¢ ' J/1432-163 ¢
If c="5
p=102R,,
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since the depth of the jet must be much less than the length of
this part of the vane, it follows that in practice so small an angle
as 10° cannot be adopted for the inclination of the guide blades,
because the depth of the jet would have to be much less than
one-fiftieth part of the radius. 1f

a=20°% 8 =22°387 24", r =1'192 R,

p 10726 3275 ¢

—_—= —_—— 48324 -

R, / T17588 T Jifi545¢
when ¢c= "5 p=1-08R,.

This value is likewise too small for practical use. If the
equation is examined, which gives the value of p in terms of ¢
and r, it will be seen that either a decrease in the value of ¢, or an
increase in the value of R, will increase the value of p. Take
¢ = '4, then p = 1°1 R, which is still too small. A less value
cannot be given than this, which corresponds with the value
o R, = 340, therefore the value of R, must be increased.
The previous calculations are based on what has been proved
must be the minimum value of the ratio R, = R,, viz., 1*8. Take
R, = 2R,,

8 =26°16'380", r = 1'6 R, )
\/_ 19°32¢& 4396 ¢

p = e e——————— -—
R, i+7545¢ J1+ 75456
when c="'5
p=11R,
when c= "4
p=117R,;

which is a suitable value. The corresponding value of w R, is
82v,. When R, = 2 R,, the absolute velocity will be equal to
*4v,, when p = 1:46 R,.

In the case of inward-flow turbines we may simplify the in-
vestigation by supposing the radial velocity constant and equal
to v, sin q, since up to the point where tan ¢ = O, this could not
differ appreciably from the truth. On this supposition

=——P _
tan ¢ = N/4r’—p’

tan y = ve __ P, .
oy sine /32 T’
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therefore, when tan ¢ = O, since 2r = R, sec a,

pv,sina
Jar—g

wp = =cv, cO8 a

and
_ R, ¢
4/ ¢ cos *a - gin %a

P

a8 in outward-flow turbines we may show that we cannot adopt a
less value for o than 20°. With this value we get

when c="'5
p="'8R,wR, =530,
when c='4

p="'"8R,0R, = 470,

In thé case of parallel-flow turbines we cannot obtain a solution
of the problem, but the best value of the ratio w R0, cos a
cannot differ much from *5. We should probably find also that
we could not adopt in practice a less value for a than 20°.

We are now in a position to discuss the value of the co-efficient
of efficiency, in arriving at which we shall have to examine—

(1.) The magnitude of the vane efficiency estimated on the
supposition of the exact truth of the assumptions on which the
calculations are based.

(2.) The divergence of the actual from this calculated theoretical
efficiency, owing to the divergence of the assumptions from exact
truth. ‘

(3.) The ratio of the efficiency of the wheel to that of the vane.

In estimating the magnitude of the vane efficiency, we must
consider the two parts separately. As regards the first part,
since the head lost in passing over any element may be divided
into two components, one parallel to the direction of motion, and
the other radial, which last can have no effect on the motion, but
simply causes a radial strain towards the centre in outward, and
from the centre in inward-flow turbines, it is evident that the
efficiency must be less than that of a flat vane moving in a linear
direction inclined at angle a to that of the jet, or the theoretical
cos %a

2
o R, < v, cos a differs more from its best value in the case of

efficiency must be less than . Since the value of the ratio
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outward-flow turbines than in that of inward, this part of the
efficiency will probably. be less in the former case than in the
latter.

As regards the second half of the vane, the greater the height
due to the velocity with which the jet leaves the first half, the
greater will be the head lost in passing over the second half.

In the case of outward-flow turbines we cannot havew R, > ‘32 v,
unless a be > 20° and the height due to the absolute velocity on
leaving the first half will be about

(*16 cos %a4-sin %a) 0,2 -250,?
2¢g T 29
and the absolute velocity itself will be equal to *5 v,.

In the case of inward-flow turbines, on the contrary, we may
have the initial vane velocity equal to -53 v, and the height due
to the velocity on leaving the first half of the vane will be equal to

(°25 cos ?a + 8in %a) v, 34,2
2g T 2g 7
and the absolute velocity itself will be equal to *58 v,.

Thus the head lost in passing over the second part of the vane
of an inward-flow turbine must be about 10 per cent. more than
that lost in the case of an outward-flow turbine, and therefore the
efficiency in the former case somewhat greater than in the latter,
if the ratio effective power = power lost be identical in the two
cases.

In the case of an outward-flow turbine the maximum value of
the head lost in passing over the second half of the vane would

14 2
therefore be equal to 12 ;‘

, and in that of an inward-flow
*23 9,2
29
a flat vane moving normally the effective power developed would

be equal to

turbine te Now if this head were lost by impact against

66 X "149? 092
29 Y
in the first case, and in the second to
"66 X *23v? ‘1597
29 ETE
Since, however, a great part is lost in producing radial pressure
the effective power developed by the vanes of turbines must be
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much less. The efficiency of outward-flow turbines must therefore
be less than *56, and of inward-flow less than - 62.

By sufficiently increasing the number of the vanes and guide
blades we may make the divergence from exactness of the assump-
tions on which the theoretical investigations are based practically
unappreciable, whilst in the case of the flat vanes of a vertical
wheel the jet strikes the vanes at various angles and with less than
the assigned initial velocity owing to the increment in the area
of the jet at some distance before it strikes the vane. In addition,
since the jet strikes and glances off the vane at the same side, the
recoil of the water which first stikes the vane will agitate and
diminish the velocity of that which last reaches it. On the whole,
therefore, we may conclude that the ratio of the actual to the
theoretical vane efficiency in the case of a turbine vane is much
greater than in that of the vane of a vertical wheel. If we take
the actual vane efficiency, therefore, of a turbine as equal to the
theoretical vane efficiency of a vertical wheel working-clear of
tail water, we shall have the efficiency of the former to that of the
latter = 5 : 4 nearly.

The ratio of the efficiency of the wheel to that of the vanes
depends upon the amount of the resistance due to friction of
bearings and of the air or water in which the wheel revolves.
Some experiments made to determine the difference between the
efficiency of turbines working in air and working in water, made
by Monsieur Girard, show that the efficiency in the latter case is
only about 85 per cent. of the efficiency in the former. The friction
due simply to bearings is very trifling, so that if the turbines work
in air, we may consider the wheel efficiency practically equal to
the vane efficiency. The actual efficiency will probably therefore
lie between 40 and *b55.

Although it does not lie within the scope of the present Paper to
give any description of the different sorts of turbines which have
been invented, the Author cannot avoid discussing one particular
turbine invented by Professor Thompson, and called by him the
“vortex turbine,” because the principles of construction and the
nature of the action of the water against the vanes, as described by
that gentleman, are diametrically opposed to those laid down and
described in this Paper.

The following description of the principles of construction of
this turbine is abridged from a Paper read by Professor Thompson
before the British Association in 1852 :—

“ The velocity of the circumference is made the same as that of
the entering water, and thus thers is no impact between the
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water and the wheel. This velocity must be equal to the velocity
which a heavy body would attain in falling through a vertical
space equal to half the height of the fall. Thus one half only of -
the fall is employed in producing velocity in the water, and
therefore the other half still remains acting on the water within
the wheel chamber at the circumference of the wheel in the con-
dition of fluid pressure. Now with the velocity already assigned
to the wheel it is found that this fluid pressure is exactly that
which is requisite to overcome the centrifugal force of the water
on the wheel and to bring the water to a state of rest at its exit,
the mechanical work due to both halves of the fall being trans-
ferred to the wheel during the combined action of the moving
water and the moving wheel. In the foregoing statements the
effects of fluid friction and of some other modifying influences are
for simplicity’s sake left out of consideration. Thus by the
balancing of the contrary fluid pressures, due to half the head of
water and the centrifugal force of the water in the wheel, com-
bined with the pressure due to the ejection of water backwards
from the inner ends of the vanes of the wheel when they are
curved, only half the work due to the fall is spent in com-
municating vis viva to the water, to be afterwards taken from it
during its passage through the wheel, the remainder of the work
being communicated through the fluid pressure to the wheel with-
out any intermediate generation of vig¢ viva. Thus the velocity of
the water where it moves fastest in the machine, is kept compara-
tively low, not exceeding that due to half the height of the fall,
while in other turbines the water usually requires to act at much
higher velocities. In many of them it attains at two successive
points the velocity due to the whole fall.”

The above is a word-for-word abridgment, that is to say, it is
an extract with intermediate parts not directly bearing on the
main principles of action left out, not ‘a summary of Professor
Thompson’s Paper. In it there are three salient principles enun- -
ciated which are diametrically opposed to those already laid down
in this Paper. These are:

1st. That a velocity of rotation is communicated by the turbine
to the water. ' :

2nd. That statical fluid pressure can develop effective power in
a turbine.

3rd. That in any turbine the absolute velocity can at two
successive intervals be equal to that due to the whole fall.

To controvert the first statement it seems almost sufficient to
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point out that the water produces rotary motion in the turbine,
not the turbine in the water. It is clear, however, that whatever
change of absolute velocity the vanes of the turbine may produce
in the water, it is only their relative motion which we have to
discuss. This will be the same if velocities equal and opposite to
that of each point of the vane be impressed on both the vane and
the water so as to bring the vane to rest. The water now clearly
can have no motion of rotation, and therefore no centrifugal force
can be impressed upon it. Since the relative motion is the same
in both cases there will be no motion of rotation and no centri-
fugal force communicated by the vanes to the water when the
turbine is in motion. If some extraneous force, other than that
due to the impulse of the water, were applied causing the turbine
to rotate with any given angular velocity, and the water entered
the drum radially, the breadth of the crown, that is the difference
between the external and internal radii, which would contain a
sufficient weight of water, moving with the assigned angular
velocity, to reduce the radial velocity of the entering water by an
amount equal to that due to half the whole head, is a matter readily
ascertained. The external power so employed must be greater
than the effective power of half the fall, since the effective power
developed at the periphery of the turbine is equal to the gross
power of half the fall. We see, then, that the power of half the
fall cannot be applied by any machine of which the efficiency is
not perfect to counteract the power of the remaining half in the
manner indicated.

It follows, then, a fortiort, that if the power due to the first half
of the fall could produce such a velocity of rotation on the mass
of water in the turbine as to counterbalance the power due to the
remaining half, no external effective power would be developed
by a turbine under those conditions unless it be developed by the
statical pressure of the fluid against the vanes. Now since such
a pressure would act equally against the front of one vane and the
back of the succeeding ome, it follows that this pressure could
have no effect in producing motion. As to the statement that in
some turbines the absolute velocity at two successive points can
be equal to that due to the whole fall, it is merely necessary to
remark that as no head can have been lost in the interval, no

. effective power can have been developed. Such a turbine may
exist, but the: part of the machine intervening between the two
points is manifestIy useless. If no friction existed, or if its amount
could be ascertained, there would be no theoretical difficulty in
designing an outward-flow turbine in which the relative velocity
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of the water at a given point should be equal to its initial absolute
velocity. _

Since, theoretically, in a * vortex turbine” the initial absolute
velocity is due only to half the whole head, the area of discharge
should be to that of turbines in which the initial velocity is that
due to the whole head as 7 : 5. If, therefore, no such centrifugal
force exists as that described by Professor Thompson, the actual
discharge will be to the estimated discharge as 7 : 5, and the actual
efficiency to the estimated efficiency as 5 : 7.

Very few turbine-makers hesitate to guarantee 75 per cent. effi-
ciency. Some even do not stop short of 80 per cent. The con-
clusions at which the Author has arrived, as regards the value
of the efficiency, differ so widely from this, that no possible
divergence of the conditions stated in the assumptions, on which
the calculations are based, from what actually takes place, can save
us from this dilemma. Either those assumptions are utterly
wrong in principle, or the results of the experiments are
utterly unreliable, because if the assumptions be trme in prin-
ciple any deviation from them will diminish, not increase the:
efficiency. :

The Author has not met with any record of experiments made
on small models, where the exact amount of water can be ascer-
tained with accuracy, but only of those made with wheels con-
structed to utilise large volumes of water. In these cases the
correctness of the results depends entirely on the accuracy of the
gauging, which virtually means that we may, within by no means
narrow limits, make the efficiency what we like.

In the Paper of Professor Thompson’s already referred to there
is a tabular statement of thirteen experiments made by him with
a wheel at Ballysillan. The gauging was made on a rectangular
weir 3 feet long, the co-efficients used being those of Poncelet
and Lesbros. The Paper does not give a description of the nature
of the weir, nor does it state the area of the openings between the
guide blades of the turbines. The heads in the first column are
the depths of the water measured over the weir, not the depth of
the crest below the still water, so that in using Poncelet and
Lesbros’ co-efficients, which all refer to the head measured from
still water, we must make an allowance for the height due to the
surface velocity at the crest. Since the less the width of the crest
the less will be the height due to the velocity of approach, we
shall arrive at the smallest calculated quantity by assuming that
the gauging was made by means of a plank weir.

The formula for ascertaining the theoretical discharge over a
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weir, in cubic feet per second, where the velocity of approach is
neglected, is

D= §zh. JIghe

where D is the discharge, and I, b, the length of the weir and
depth over the weir in feet. If we compare the theoretical
quantities obtained from the formula with those given by Pro-
fessor Thompson, we find that he has used the co-efficient *612,
which is that given by Poncelet and Lesbros for heads measured
from still water for sunk orifices, in which the ratio of the length
to the depth is the same as that of the notch we have to gauge.
If, then, h represents the height of the surface of still water
above the crest, the gauging, according to Poncelet and Lesbros,
would be \

D= -618x 21 /25 {# = (h— )},

For a similar ratio of length to depth of notch Brindley and
Smeaton give the co-efficients for heads measured from still water
657, Du Buat 627, and Messrs. Simpson and Blackwell - 756, the
ratio of the length to the depth of the notches in the last case
being about 10 to 1.

In the above list of co-efficients the small ones are those deter-
mined from experiments with small depths of notches from 1” to
2", in which the loss from friction and contraction must necessarily
be greater in proportion to the whole discharge than when the
notches are deep. In Simpson and Blackwell’s experiments the
depth over the crest was about equal to that in the gauging made
by Professor Thompson.

The next point we have to consider is the height due to velocity
‘of approach. Du Buat’s experiments led him to conclude that the
head over the weir was only equal to one-half the head measured
from still water. For heads from still water of about 7 inches
Messrs. Simpson and Blackwell found that =13 h, The
minimum value appears to be A=1:2h,. This value has been used
in the following table to correct the gauging made by Professor
Thompson, and the value h =125 h, to determine the gauging
according to Brindley and Smeaton’s co-efficients.

In some experiments made by Mr. Ballard at Worcester, * 75
was determined as the proper co-efficient for heads measured on
the crest, which agrees with the corrected co-efficient of Poncelet
and Lesbros. Du Buat's co-efficient is the same as that of Messrs.
Simpson and Blackwell, -94.
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In the following table the heads over the weir varied from ‘617
to ‘718 feet, and the theoretical discharge, neglecting velocity of
approach, from 524 to 579 cubic feet per minute.

The co-efficient of efficiency, therefore, may have been as low as
*41, and cannot have been higher than :63. The average of three
sets of gaugings, in which the velocity of approach has been

, allowed for, is *53.

Since the gauging is a matter of so much uncertainty, it is
evident that, even if we knew the exact quantity of water avail-
able, we could not design the guide-blade orifices with sufficient
exactness. If too large, head would be lost, if too small, the
quantity of water passing through the turbine would be less than
the available quantity. In addition, therefore, to the necessity
of being able to vary the quantity of water to suit the varying
amount of work to be done, we must have the means of varying
the area of the guide-blade orifices, so as to insure the passing of
the whole of the water without losing head. In practice this is
done in two ways—either by using movable guide blades, or by
having sluices in front of the guide-blade openings. It is quite
evident that there must be a loss of efficiency in the case of
movable guide blades whenever the inclination of these to the
direction of motion differs from that in accordance with which
the curve of the relative path has been designed. Therefore
movable guide blades ought not to be used, because the efficiency
will be least at a time when it ought to have its maximum value,
viz., when the quantity of water is least.
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When sluices are used there may be either a separate sluice for
each orifice, a separate sluice for every two or three or more, or
one sluice for the whole number. When there is only one sluice
it is evident that as the sluice closes, the area of flow on the re-
ceiving side of the guide-blade chamber diminishes, whilst that
on the discharging side remains constant. The velocity of flow,
therefore, on the receiving side will increase, and that on the
discharging side decrease, as the sluice closes, until they become
equal. After this point the velocity on the receiving side will
exceed the velocity on the discharging side. In addition to this,
the motion of the water, when it strikes the vanes, will not be
steady, and the issuing water will form eddies between the vanes
with the external water, which will have a tendency to force its
way into the turbine. Therefore the efficiency, with such a sluice,
will diminish very rapidly as the sluice closes. Fourneyron, in
some experiments made at Inval, found that the efficiency, when
such a sluice was lifted one quarter the full height, was only equal
to five-sevenths of the efficiency when the sluice was open. To
remedy this he inserted horizontal diaphragms between the guide
blade and the vanes. It is evident that these could only be of
much efficiency when the bottom of the sluice was exactly opposite
to one of them, and the loss by friction must have been very
much increased when the sluice was fully opened.

The greater the number of sluices the fewer will be the number
of guide-blade orifices affected by the diminished velocity of dis-
charge, and consequently the less the diminution of efficiency
owing to the diminished quantity of water. When some of the
guide-blade orifices are closed there will probably be a slight in-
crease in the frictional resistance of the external water, because
the water opposite the closed guide blades will not, like the
issuing water, be moving with the relative velocity of the water
and the vane.

To secure a maximum of efficiency there ought to be as many
guide blades as vanes, and the interval between consecutive guide
blades should be as small as is practically possible.
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APPENDIX. L

SuMMARY OF SMEATON’S EXPERIMENTS.

Tas following description of the mode of performing his experiments, and the
tabular statement of the results, are taken from a Paper read before the Royal
Society in 1759 on the natural powers of wind and water. The wheel, which was
24 inches diameter, had flat radial vanes. It revolved in a race into which the
vanes exactly fitted, leaving just sufficient play between the bottom and the sides to
prevent any chance of the wheel being impeded by contact with these and the vanes.
At the upper end of the race was a cistern provided with a sluice capable of being
lowered or raised at the will of the operator. The water after leaving the wheel
fell into a receiver, whence it was pumped up into the cistern. The apparatus -
was so arranged that the operator could keep the water in the cistern during the
experiment at the same level, so that the force exerted by the issuing water
remained constant during each experiment. The quantity of water issuing per
second was exactly computed by the number of strokes of the pump.

The water struck the vanes at the lowest part of the wheel on a level with the
sluice, and therefore the current must previously have moved along the race a
space greater than the radius of the wheel, so that its velocity at the instant of
impact could not be even approximately calculated by theory. Its exact value was
ascertained experimentally in the following manner :—Around one end of the axis
a hollow drum wus attached capable of engaging and disengaging itself by means
of a clutch. Round this drum was wound a string connected with a system of
pulleys, and a scale for weights. The string could be wound round any side of the
drum, so as to act either with or against the stream. As a first approximation,
the number of revolutions of the wheel were counted with no weight in the scale.
Since it would be retarded by the weight of the scale and the frictional and other
resistances, the actual velocity would be somewhat greater than the speed of the
circumference under these conditions. The water was now shut off, and the string
wound round the drum so as to turn the wheel in the same direction as the cur-
rent. Weights were then put into the scale so as to make the wheel revolve
somewhat faster than it had done under the action of the water. Now, it is evident
that when the water is again admitted, the motion of the wheel will be accelerated,
if the speed of its periphery be less than that of the current, and retarded if greater,
and if equal, equal. '

By this means, then, the actual velocity of the water at the instant of impact
was ascertained.

Smeaton’s object being to ascertain the efficiency of the vane apart from that of
the wheel, it was necessary to clear the results obtained from the effects of friction
and other resistances, the principal being the action of the air against the vanes.
He achieved this as follows:—After having found out the speed which gave the
best results, he shut the water off, and applied such a weight to the scale as made
the wheel turn the same number of revolutions. The weight of the scale, then,
and this added weight, are due to the frictional and other resistances, and there-
fore to ascertain the full value of the effective power of the impulse on the vane
these must be added to the weights put into the scale, and the weight of the
scale itself. For the sake of illustrating his Table, Smeaton has given the
following example of the working out of one of his experiments.
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SPECIMEN OF A SiT oF EXPERIMENTS.

Sluices drawn to first hole.

Water above floor of sluice . . e .
Strokes of pump per minute . . . . .
Head raised by twelve strokes . . . .
Area of head -

Wheel raised empty scale, and made tums in

a minute . .
With oonnter-wewht of l lb Sozs it made .
With ditto tried mth water

30 inches

39}

21 inches

105-8 sq. inches

80
85
86

| :
No. of Experiment. l 1 2 3

| | |
' | | 4 5 (] i 7 8§ | 9
[ |
Weight in 1bs. & ozs. '4 05 06 0/7 0 8 0 9 010 011 012 0
Tarnsin aminute . 45 . 42 36} ! 383 30 26| 22 | 16} I 0
Product . . . . 180 210 | 217} i 236} 240 238} | 220 | 181} i 0
|
Counter-weight in the scale for 30 turns 2 ozs.
Weight of empty scale and pulley . . . 10ozs.
Circumference of cylinder . . 9 inches

Circumference of water-wheel . . . . 75inches

From the above results of experiment we find by calculation power of water.

Head due to.veloeity ofimpact . . . . 15inches
Weight of water expended in & minute . 2647 1bs. v
Power of water in pounds and inches . . 8970
Effective work done. .
. lbs ozs.
Weight in scale at maximum . . 8 0
Weight of scale and pulley . . . . 010
Counter-weight of scale and pulley (value of .
wheel resistance) . . . . 0 12
Sum of resistances . . 9 6
Height raised . . .+ 135 inches.
Effective power exerted in pounds and inches 1,266
Whence Effective power =-318
Whole power ot
Effective power C e e e .. =862
Power lost
Best velocity of vane = _35

Velocity of current

In estimating the ratio of the best load to the maximum load, Smeaton entirely

neglects the frictional and other resistances in the case

of the maximum load for

the following reasons, assigned in a foot-note:—* The resistance of the air in this
case ceases, and the friction is not added, as 12 Ibs. in the scale was sufficient to
stop the wheel after it had been in full motion, and therefore somewhat more than

a counterbalance for the water.”

The resistance of the air ought, of course, to be omitted, but surely not the
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resistance of friction, since 12 1bs. is not the weight which suddenly stopsthe wheel,
but is the weight arrived at by successive increments of 1 1b., which keeps the
wheel at a state of rest, and must therefore be increased by the value of the load
due to friction. The omission of this load, which in the case of small velocities
is nearly equal to that in the scale, makes the maximum load nearly equal to
the whole load, and causes him to remark : —*“It is somewhat remarkable that,
though the velocity of the wheel in relation to the water turns out to be greater
than jrd the velocity of the water, yet the impulse of the water in the case of
a maximum is more than double what is assigned by theory; that is, instead of
being $ths of the column, it is nearly equal to the whole column.”

The Author has already demonstrated in Part I. that the correct theoretical
value of the maximum load is equal to two-thirds of the pressure on the vane
when stationary. Owing to the effect of friction being left out of consideration,
the experimental values assigned by Smeaton are much greater than this. Fortu-
nately, the example given of the way in which the Table is formed affords the
means of ascertaining the value of this frictional resistance with sifficient
exactness. Since friction is approximately independent of the velocity, although
it will be somewhat greater for heavy loads on the scale than light loads, we
may consider it practically constant, and that the variation in the total re-
sistance is wholly due to the resistance of the atmosphere, which will vary as
the square of the angular velocity of the wheel. The value of the friction thus
determined will be less than the correct value, and therefore the value of the
ratio best load + maximum load still too great.

If z represent the load due to friction, and y the load due to air resistance for
80 revolutions, the resistance due to 85 revolutions will be equal to (g—g); =8y
nearly, and we shall have

x+y = 12o0zs.
z + 8y = 84 ozs.
y = 3 ozs. nearly
z = 9 ozs.

Now, this frictional resistance is due.to the weight of the wheel” and the
weights of the scale and pulley and the added weights. TLlese lust are probably
very much less than the weight of the wheel itself, so that there could not be a
material increase in the value of x due to the weights in the scale. We may,
therefore, take 10 ozs. as a fair approximate value. Column 13a, added by the
Author, gives the corrected values of the ratio load at best speed -+ by load
at equilibrium. When the added loads are large, the corrected ratios do not differ
much from those given by Smeaton, but differ materially when the loads are
small, for the reason already assigned, that the load due to friction in the latter
case is much more nearly equal to the whole applied load than in the former.
Notwithstanding this, Column 13a still presents the curious anomaly of the ratio
in question being greatest when the experimental value of the ratio best velocity of
vane -+ velocity of current is greatest. These last values occur when the virtual
head and the loads in the scale are least, and are plainly owing to the assumed
value, viz., 10 0za. of the load due to friction being less than its real value. Column 11a,
giving the ratio effective power + power lost, has also been added by the Author.

In the beginning of his Essays, Smeaton states that he found the results of
actual practice agree very approximately with those of his experiments. In the
latter the wheel efficiency of the model was equal to about 90 per cent. of
the experimental vane efficiency, or the efficiency of undershot wheels working
drowned is equal to about *27.
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APPENDIX II.

SeCTION I.—FCRTHER REMARKS ON THE MAGNITUDE OF THE RELATIVE VELOCITY
BEFORE AND AFTER IMPACT, AND ON THE STATICAL MEASURE OF THE IMPUL-
SIVE PRESSURE EXERTED BY A JET AGAINST A VANE.

The preceding investigations in this work are based on the assumption that the
jet of liguid consists of an infinite number of indefinitely small inclustic molecules.
In accordince with this theory no change of velocity can take place except nor-
mally to the plane of impact. and that change will be equal to the relutive velocity
of the jet and vane estimated in that direction.

The theoretical values of the work done by a jet striking a vane obtained by
calculations based on this theory are not strictly true, because it is assumed that
each molecule actually strikes the vane at the same angle as the axis of the jet
cuts the normal to the vane. In reality the vane spreads out into a conical shape,
so that the different tiireads, of which we may suppose it is comprised, are inclined
at various angles to the plane of impact, and ouly a part of the jet actually strikes
the vane, the impulsive pressure impressed on the vane by the remainder being
conveyed through the agency of the intervening fluid. In accordance with this
theory, in order to insure a maximum of efficiency, the sluice orifice ought to be
as small as can practically be adopted.

The other theory states that the relative velocity after impact is equal to the
relative velocity before impact. If then the jet strike the vane without shock, so
that no velocity is lost in whirls and eddies, in accordance with this theory, if tan-
gential friction be left out of consideration, the power lost by the water will be
exactly equal to the power imparted to the vane. It is, in fact, an extersion of
the maxim of the chemists, that matter itself is indestructible, to the temporaiy
qualities or properties possessed by matter.

An analogous case would be that of two inelastic masses m, m', impinging
against one another. Suppose, for the sake of simplicity, that the mass m’ is at
rest before impact. If the mass m be moving with a velocity » before impact, its

capacity for work will be equal to ,22,12. After impact the two masses move on in

contact with a common velocity v which is equal to 17':-”7"" 80 that the sum of the
capacity for work finally possessed by the mass m plus that possessed by the mass
2

m' will bz equal to Q(T":-I_—T')' which is always less than the original capaci‘ty
possessed by m, and may be indefinitely small. If the balls are elastic and of the
same substance, whose modulus of elasticity is e, we shall have the velocity of the

. —em’ , (14e)mo
mass m after impact equal to Y ® and that of m’ equal to o

, which in one case

b
v?m (m + e* m')
2(m + m’)

so that the final capacity for work is equal to

2
only is equal to !'-'2—1, viz., when the elasticity is perfect.

It inay be that the principle, properly fnterpreted, is correct, and that the
power lost by the first ball is partly expended in communicating momentum to
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the second and partly in producing heat, which, in the case of perfectly elastic
‘balls, is at once given back again in the shape of an increase of the mo- .
mentum due to direct impact, and in the case of inelastic balls remains stored
up, and simply increases the temperature of the masses m and m'. Any dis-
cussion as to the relative temperatures of the water and the vane after and before
impact is, however, irrelevant. The Author will have gained his point if he can
prove, either by argument or experimental results, that conclusions as o the
efficiency of water-power machines, based on the assumption—to use Viry’s own
words—*“ rien se perd dans la nature,” must be erroneous, when that maxim is
interpreted to mean that the effective power communica.ted to the machine is
equal to the power lost by the water.

In the memoir the Author has proved, that the relative velocity after impact
cannot be the same as the relative velocity before impact, if it be true that no
reaction can take place between a jet and a smooth vane, except in a direction
normal to the plane of contact. Leaving theoretical reasoning aside, the truth
or falsity of the opposite assumptions may readily be ascertained by very simple
experiments.

If the flat smooth plate of metal attached to the end of the hose of the
common street-watering machines be held horizontal, and the nozzle of the jet
likewise at first held horizontal and subsequently lowered so as to strike the
plate at different angles, it will be found that the range of the jet rapidly
decreases as the angle of iuclination of the jet to the vane increcases.

Again, if a jet whose initial velocity is due to a head of 4 or 5 feet be directed
horizontally against a smooth vertical wall, it will be found that the water rises
vertically on the wall, not 4 or 5 feet, but only as many inches. Mere friction in
this case could not have destroyed from 80 per cent. to 90 per cent. of the power.

In fact, if the assumption is even approximately true, it would not be possible
- to fill from a tap any smooth vessel with diverging sides.

Monsieur Viry, in the treatise to which reference has already been made, has
given an investigation into the value of the statical measure of the impulse against
vanes at rest, of which the following is & summary. It is based on the assump-
tion that the fheory of Bernouilli, demonstrated to be true under certain con-
ditions only, when applied to the case of water flowing with steady motion along
a tube or channel, is applicable to the case of a jet striking a vane, and that the
relative velocity after impact is equal to the relative velocity before impact.

In Figs.1, 2, and 3, R X is normal to the vane G P vertical, 8 is the angle
between the normal and the vertical, a between the normal and the direction of
the jet, and o' the angle of inclination of the verge boards in Figs. 2 and 3 to
the normal. i

If we consider the change of motion of the volume of water contained between
A B, CD, and EF as it passes into the position A’'B’, C' D’, and E'F", it is evi-
dent that the dynamical state of the part A' B, C D, E ¥ common to the two
positions of the given mass of flnid is unaffected by the change, and we have
then only to consider the change of motion of the volumes AB A’B’,CD C'D’,
and EF, E'F".

In accordarce with Bernouilli’s theorem, no account is to be taken of the
internal molecular agitations, but only of the initial and final states of the liquid.

Case I.—Plane Vane, Fig. 1.

Since the motion of the water finally in the parts CD, C'D’, and EF, E' F' is’
wholly tangential, there is no change of momentum normal to the plane.

If v be the velocity and p the weight of the water in the part A B A’ B’, the

initial normal momentum will be equal to—g v cos a. Since this is directed from

G 2
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X towards R it will have a negative sign, and the variation of the momentum
projected on the plane will be

0— (— pvcosa) _ bvcosa
9 g,

We have now to consider the value of the normal impulses which have pro-
duced the above change of motion. These are due to the normal component of
the weight P of the volume A’'B'CDEF and the reaction R of the plane.
Since the component of the weight acts from X towards R, it must be affected
with a negative sign, and the sum of these impulses during an interval 8 will be

- PoOcosB+ R,

.

and we obtain, by equating these with the expression for the change of motion,

Ro="PocoesB +P”;’s—5.

If w be the area of the jet at A B, and » the weight of an unit of volume, we get

~

< p=mrwvé

2
R=Pcos B + w_w.igios_a'

Cases II. and III.—Vanes with verge boards, Figs. 2 and 3.

The i.nve:stiga.tion in these cases is precisely similar, but the final velocity is
© cos o in direction of R X in the former, and from X to R in the latter, so that
we get

CaseII. R=Pecrs B+ v wo? gc_oia_-mw

9

Cose IIl. R =Poosf 4 rwo? 052 08a)
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In the above expressions for the resistance overcome by a flat vane in an unit
of time there are two elements—the statical weight of the superincumbent
water, and the statical measure of the momentum exerted by the water during
the sume interval: since the former is constant and independent of the time, it

clearly cannot be a member of an equation of relation between the resistance
overcome in an unit of time and the momentum of the water expended in that
time. Apart from this consideration the equation does not contain the correct
value of the superincumbent weight. Since the demonstration above given holds
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perfectly truc at whatever points we take the volumes AB A’B/, CD C’' D', and
EF E'F so long as at the points selected the motion is steady and unaffected
by the impulse, and in the last parallel to the plane of the vane, it follows that,
according to Viry’s theory, we may give to R any value we like. It is plain,
however, that the dead weight of the water acting normally against the vane
must be due to the volume of water in contact with the vane, of which the
.normal velocity is wholly destroyed, and will therefore vary with the area of the
vane, but will be perfectly independent of the volume A’ B, CD, EF.

The value of the direct impulsive resistunce overcome is the same as that given
in this memoir, because the value of the final relative velocity does not a.ﬁ’ect the
problem in the case of a simple flat vane.

In Case IL., although the reaction cun only take pluce in one duectlon, viz.,
normal to the plane of the verge boards, the component of the resistance over-
como by the latter at right angles to the original plane of impact is stated to be
equal to p v cos a’. Its correct value is clearly equal to p v cos o' sin q, since
the water moving along the initial plane of impact parallel to it, and unaffected
by it, may be looked on as a jet striking the plane of the verge board, the angle
between its direction and the normal to the plane of the verge board being equal
toa'.

In Case IIL. it is clear that the problem cannot be solved without taking into
account the relative area of the jet and the vane. "Thus the area of the vane
must be less than sufficient to cause the water to move parallel to its plane; and,
if less, tiie angle of inclination of the verge boards to the normal R X must not
be less than that of the jet after it leaves the first vane. If that inclination cun
be ascertained in terms of the relative areas of the jet and the vane, then the
problem may be solved in the way pointed out in Case IL, otherwise not. In
Case II. the area of the vane is, of course, supposed to be sufficiently great to
allow the water to spread quietly round the direction of the original jet parallel
to the plane of initial impact.

Referring to Case L., if we put 8 = O, a = 90°, that is, if the direction of the
jet and the normal to the vane be herizontal, we get

- wo? v?
R= =2rw 2—g,

If the vane be pressed against the orifice, so that the flow ceases, the pressure

2
upon the vane will be equal to » w. Zv—g From this Viry concludes that the sta-

tical pressure due to the jet is double the statical pressure of the head of water
due to the velocity of the jet. It is, however, a case of comparing unlike things.
R is not the instantaneous stagical pressure caused by the jet, but the resistance

* wv?

overcome in an unit of time, In fact R = =Two. z. that is to say, R is

equal to the statical measure of the impulse with which a body, whose mass is
equal to that of the volume of water discharged in an unit of time, moving with
a velocity v, would strike the vane.

SecTION I1.—DESCRIPTION OF VORTEX TURBINES ERECTED AT READING BY MESSRS.
LAwsON AND MANSERGH FOR THE LocAL BOARD oF ﬂmx.'rn, AND ANALYSIS
OoF EXPERIMENTS MADE TO TEST THEIR EFFICIENCY.

These turbines have been erected at the outfall pumping station of the
Reading sewers at Blake’s Lock on the Kennet, for the purpose of utilising the
water power at that point purchased by the Urban Sanitary Authority. The head
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of water varies from 8 feet 9 inches to practically nothing in flood time, when the
Thames water backs up to the level of the head water.

The minimum quantity of water available in the driest serson is about 8,000
cubic feet a minute. The turbine-makers had to base their tender ou the
following conditions :—

(1.) To provide one or two turbines capable of utilising at least the minimum
quantity, and a second or third to be used whenever there was sufficient water.

(2.) To state the effective power they were prepared to guarantee for a 3-feet
head.

The tender of Messrs. Williamson Brothers, of Kendal, to erect three of Pro-
* fessor Thompson’s vortex turbines, one with fixed and two with movable guide
blades, was accepted. Fig. 3 is a horizontal section through the drum, with
the guide blades at their standard opening of 8§ inches. The internal diameter of
the turbine is 4 feet 6 inches, and external 7 feet 6 inches. Tle depth of tl.e
guide-blade orifice is 2 feet 84 inches. That of the turbine is the same through-
out, and equal to 2 feet 8 inches, being less than that of the orifice of supply by
the thickness of a diaphragm which divides it into two equal portions. -

The inncr curve of the guide blade seems to be struck from two centres, 0", o
being the position of these centres when the guide blade is fixed at the standard
opening. The sweep of the vanes consists of two reverse curves separated by an
interval of straight. The centres of the exterior curves coincide with the point of
intersection of the next but one preceding vane with the dotted circle. The
tangent to the vane at the inber periphery passes through the point where the
succeeding half-vane meets the exterior periphery, and the intervening straight
touches the dotted circle shown close to inner periphery. The centres of the
corresponding curves lie on the inner dotted circle.

If we suppose that the direction of the water between a and d runs in threads
parallel to the outer guide blade, and to the inner guide blade between z and a,
-the angle a, at which the jet meets the tangent to the outer periphery, will be at
z and d 8° 38", at a 5° 43,5 7°,9', and ut ¢ 8° 5'. It is therefore imnpossible with
guide blades of this description to design a-theoretically perfect turbine.

The angle B, at which the vanes cut the discharging side, is equal to 21° 10/,
and the angle, at which a perpendicular to any vane through its extremity cuts
the radius through the point where it intersects the preceding vane, is 22° 2'.
The vanes cut the periphery on the receiving side at an angle of 65° 30'.

These duta are taken from a sectional plan drawn to a scale of an inch to a foot,
and may not therefore be exactly correct, but they are sufficieutly near for the
purpose of the present discussion. Assuming that the values above assigned for
the angles at which the vanes cut the outer and inner periphery are correct, we
may readily ascertain the corresponding theoretical value of a, if we leave friction
out of consideration, and suppose that the turbine is always flowing full.

If w, v be the initial velocitics of whirl of the outside peripheiy and the water,
the whirling velocity of the inner periphery will be u w; and if the velocity of
whirl of the water be destroyed, the final velocity of flow will be u w tan 8.
Since the initial velocity of flow is v tan a, and the final area of flow u times the
initial urea, we must have

p2wtan 8 = v tan a.

Also, in order that the water may strike the vanes without shock,

viana

tan 65° 30',
V=W

whence a = 7° 31".
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According to the maker’s guarantee, the best velocity of rotation of the turbine
for a 3-feet head is 24 revolutions per minute. For this hend, therefore, uw=38393
lineal feet perminute. Since the velocity of whirl is supposed to be wholly destroyed,
the final relative velocity of flow at the point p will be equal to uw sec 8 = 3638

lineal feet. At the point e the relative velocity cannot be less than z—i # w sec

22°2' = :—;—g 1w sec 28° 2’ = 400 2 lineal feet, since the sum of the areas of the

openings perpendicular to the relutive velocity at the inner periphery is equal to
24 { 2 feet 8 inches x 2} inches } = 12 superficial feet, the discharge ought to be

Scale § inch =1 foot.

between 4,365 cubic feet and 4,800 cubic feet per minute. The initial velocity of

2
. w tan B
flow is equal to v sec a = “e
sin o

= 605°3 lincal feet per minute, which is

due to a head of 1 foot 7 inches. The sum of the areas of the guide blade openings
is equal to 4 { 2 feet 8} inches x 8% inches } = 7°9 superficial feet, and therefore
the corresponding discharge to 4,782 cubic feet per minute, which is equal to the
maximum obtained by computing the discharge from the final relative velocity.
Conversely, we may ascertain what ought to be the initial velocity of the water,
and the corresponding velocity of rotation of the turbines, in order that the
volume of discharge may bc equal to 4,000 cubic feet per minute. Since the
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guide-blade area is equal to 7-9 superficial feet, the initial velocity per minute
ought to be 5063 lineal feet, which is due to a head of 13} inches. According to

_ Professor Thompson’s theory, this ought to be equal to half the nett head. There-
fore the nett would be equal to 26} inches, which is only 74 per cent. of the whole

. head, 36 inches. Therefore the co-efficient of efficiency of the turbine must be
less than 74, since the loss of power due to frictional resistances of the moving
parts in contact with the external water and the bearing is not included in the
26 per cent. Corresponding with this velocity of the water, the velocity of whirl
of the outer periphery ought to be, in feet per minute,

_ 506-3 (tan 65-30 —tan @) cos a
v= tan 65-30

and therefore the correct number of revolutions 20. The quantity which the
turbine would be capable of discharging per minute, estimated from the final rela-
tive velocity on the supposition that the final absolute velocity is radial, would be
between 3,636 and 3,996 cubic feet per minute. According to the principles of
construction laid down by Professot Thompson, the velocity of the external peri-
phery ought to be equal to that of the whirling velocity of the water, and the
vanes ought in consequence to cut that periphery at right angles. We should
then have w = 506°3 cos a = 502 lineal feet, and the number of revolutions
21'3 per minute. The discharge estimated from the last data would then lie
between 3,876 and 4,260 cubic feet per minute.

Whether or not the correct discharge of the turbine exceeds 4,000 cubic feet, it
is clear that it will not pass the same quantity as the guide-blade orifices with a
velocity due to 74 per cent. of the whole head. There must, therefore, exist
within the guide blades and in some parts of the turbine a pressure greater than
that due to the tail water and the atmosphere.

According to Professor Thompson’s theory, this is due to the action of a centri-
fugal force generated by the rotation. It is stated in his papers that owing to the
action of this centrifugal force the motion of the turbine is kept steady. Thus, if
going too slow, the intensity of the force diminishes and the flow increases; if
going too fast, the intensity increases and the flow diminishes. Clearly, therefore,
Professor Thompson supposes that the water has the same angular velocity of
rotation as the turbine. Such, however, is never the case. When the turbine is
moving at its best speed, the issuing water has no velocity of rotation round the
turbine shaft; and if it be moving at less than its best speed, the direction of the
tangential component of the final absolute velocity of the water is actually opposite
to that of the turbine. ’

The only centrifugal force which can possibly exist must be due to the curva-
ture of the absolute path, which will always be directed from the centre of cur-
vature of each point of that path, and, being at right angles to the direction of
motion, can never retard the velocity of flow.

If, then, we reject the theory of Professor Thompson, the preceding investiga-
tions afford another explanation of the existence of this pressure, viz. the incorrect
relative proportions of the orifices of entry and discharge.

Let the turbine be reduced to rest by impressing upon it and the water velo-
cities equal and opposite to the actual velocities of each part. This will not
affect the quantity of discharge. In accordance with Bernouilli’s theorem, the
sum of the heads due to the pressure and velocity at each point must be constant,
if friction be left cut of consideration. If friction be taken into consideration, the
sum of the heads due to the velocity and pressure at the orifice of discharge from
the guide blades is equal to the sum of the heads due to the initial pressure and the
initial velocity of flow on the receiving side of the turbine, to the friction in passing

= 472,
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through the turbine, to the tail water and the atmosphere. The two last are
common to both points. Therefore the head due to the relative velocity of
discharge must be equal to the head due to the initial relative velocity, plus the
head due to initial pressure, minus the heads due to the atmosphere, tail water,
and friction, and we get the following equation :

?
a 2“—9:(1—K)cHsin’u(l+oots’65'30)+KcH,

in which u is equal to the final relative velocity, ¢ H to the nett initial head, and
K ¢ H the nettinitial head due to pressure. There are forty-eight vanes exter-
nally, each } inch thick. The external area of flow is therefore equal to 5996
square feet. Since the supply must equal the demand, we have

(2) 12 4 =59 9651naJ2g(l - K)cH.

Combmmg these two equations, we get K= +29. Now the area of the guide-blade
orifice must be such that the velocity of flow through it is that due to the nett head

A~29 (1 —=K)cH. Hence, if A be that area, we must have

AJ27(1—K)¢H;12¢5 )
=5996sina,/2g9(1—-K)cH,

whence A = 7°83 square fect. The actusl area at the stundard opening is
7-9 square feet.

The value of ¢ depeuds on the magnitude of the internal diameter of the turbine
and the area of the tail race. Professor Thompson app: ars to have adopted tke
value *74. The initial velocity would then be due to -53 H. When H is equal
to 3 foet, the initial velocity of the water in feet per minute would be 608 lineal
feet, and the corresponding velocity of whirl of the outer periphery of the turbine
and the number of rotations per minute would be 565 lineal feet and 24 respectively.
The discharge in cubic feet per minute would be 4,787.

The following experiments have been made to test the efficiency of the
turbines. (See next page).

The difference in the maximum deflciencies, about 2 per cent., obtamed on
October 5th and November 29th, may possibly be due to a varmuon in the pump
- efficiency. The still greater difference which exists between those obtained on

October 31st and November 5th, an’ interval of ouly six days, the Author attri-
butes to the newness of the machinery and the more unsteady working of the
turbines due to the following cause. Connected with the pump wells there is an
overflow to the river to provide against all emergencies. On the first day the
-sluice was opened to produce an equality in the height of the lift. This caused
the pumps to be buried, so that the rams had very little work to do during the
up-stroke.

Experiments Nos. 22 and 24 were made with the guide blades opened 8} inches
beyond the standard.

The quantities of discharge and of water lifted in the above columns have been
estimated on the assumption that the co-cfficient of discharge through the guide-
blade orifices is unity, and the pump efficiency perfect. '

On November 29th a series of seven experiments was made to test the pump
efficiency, by carefully noting the number of strokes made whilst the water de-
scended a depth carefully measured in the pump wells. The least number of
strokes made in a single experiment was 68, equivalent to 272 strokes of a single
pump. The co-efficients obtained varied from *76 to *79, the mean being °77.



EFFICIENCY OF WATER-WHEELS. 91
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EXPERIMENTS MADE OCTOBER 318T :—
. ft. fns.
1 |3385]| 38 2 6 771 50 ' 320°037 1,456,838 | 220
2 (332|871 2 5 85| +54 333-416 1,438,322 | +281
3 [343(|36°5| 2 4 9:9 | 62 368-220 1,505,000 | -244
4 (3834 2 8 96 | +61 | 3843-980 1,421,000 | -242
5 32434 2 4 9:1 | -59 | 338-136 1,390,848 | 243
6 | 313|364 2 4 77 +52 286°113 1,311,477 | -218
7 |823|386°7| 2 2 |[10°3| -67| 858321 1,376,100 | -260
8 (310367 | 2 1 9-8 | 63| 327°815 1,281,610 | -256
9 (342|368 2 0 |11'5] 72| 370°296 1,499,000 | ‘246
10 [ 3:36|86°81 111 |11°0 ' -70 | 339-441 1,456,838 | 233

EXPERIMENTS MADE NOVEMBER 5TH :—

11 343 436 2 6 9:0 | 57 429-400 1,505,000 | <285
12 | 351 444 2 5 |10°0| °63 | 469:700 1,559,000 | *300
13 8:57 43'5 2 4 11-0 *68 488°700 1,599,264 | -305
14 | 353 436 2 3 |[11°3| 71| 485200 1,572,300 | -309
15 [3°48 435 2 2 |11:'0| -69 | 453°800 1,539,200 | -295
16 | 856 435 2 1 (113 | °70 | 448120 1,592,500 | -281
17 | 874 450 2 4 |11-5| 69| 528-523 | °1,714,600 | -308
18 (322 448 2 4 9:3 | +61| 425:410 1,869,800 | -310
19 | 340 '43-1 2 0 |11-0| -70 | 415-030 1,486,200 | 279
20 3:08 431 2 0 10-2 +68 884760 1,281,610 | -300
21 | 241 431 2 0 70| 58| 264:050 886,920 | ~300
22 |317 43'2 2 4 108 -68 | 451-530 . .

23 3:30 432 2 4 95 -62 419-230 1,421,000 | -295
24 | 831 433 2 4 :10°7| °*69| 473070 . .

EXPERIMENTS MADE NOVEMBER 29TH :—

25 |28 [42:3| 2 8 87| °61 | 362:420 1,110,700 | -326
26 |28 |42:4| 2 2 89| 63| 863377 1,110,700 | -327
27 | 2°7 | 42°4 i 21 95| 67| 370°241 1,110,700 | -333

The Author has shown that, if. the theory maintained by him be correct, the
best ratio of the speed of the receiving side of the turbine to the velocity of the
watcr due tohe whole head, represented in the corresponding column by
A/2g H,is ‘93 when the nett head is equal to 74 per cent. of the whole head.
Since the loss due to friction in this case has nothing to do with the friction of
the external water, but only with the internal friction, 24 per cent. seems a large
deduction, since the converging sides of the guide-blade orifices prevent any con-
traction. If we cumpare the valucs of this ratio given in the Table, we find that
the valucs which correspond with the best efficiency lie between ‘6 and *7. The
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menn of those oblained on November 29th, on which the co-efficients of efficiency
were greater than any obtained before, being *64. The corresponding value of ¢
—7%-3—(5—4 = -84, and the discharge 5,100 cubic feet.

The actual discharge has been approximately arrived at in the following
manner. A plank weir was built in the tail race, the crest of which came up
within about 2 feet of the surface. To the edge of the crest a trough, 4 feet
6 inches long and about 2 feet 6 inches deep, was fixed, with its bottom as nearly
horizontal as possible. The sides of this trough were flush with the sides of the
walls of the tail race. With this contrivance the area of flow could always be
ascertained with great exactness, the length of the weir being 16 feet 6 inches.

The speed of the current was ascertained by means of a current meter pur-
chased of Messrs. Elliot. On account of the discrepancies observed during the
four first experiments, the duration of each of the subsequent experiments was
carefully noted, in order to see if these discrepancies were owing to variation in
the rate at which the current meter traversed the water. The extreme rates do
not differ much from the extremes obtained during the gauging of the velocity of
the tail race.

would be

| Percenta
Length ctual Length ge
Nug;ber I of {I):]r):g:lent in lingfeet i Ain linealiefegz torbe _n?d';e:dto
Experiment. | in minutes. registered. | traversed. ;ﬁ&ty.
1 | 1,232 | 1,320 71
2 | 1,189 ‘ 1,320 11:0
3 1,289 | 1,320 2-4
4 1,264 1,320 44
5 20 1,212 | 1,320 89
6 8 1,301 1,320 14
7 ; 11 1,274 ’ 1,320 3-6
8 7 1,299 | 1,320 1-6
Average percentage 5°0.

The velocities of the current were taken at the different points described in
Table II., in a section 2 feet 3 inches from the inner face of the weir. Those
taken at 18 inches above the bottom ought strictly to have been taken at
16 inches, but the Author did not at starting anticipate such a marked difference
in the rate at the various points. This difference was due to the current of water
discharged from the under side of the turbine, which rises up vertically against
the weir, and causes eddies and cross currents even at the distance of 2 feet
8 inches from the inner edge of the crest. In order to get a reliable gauging, it
was necessary on this account to take the velocities at a great number of points.
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1| 8|1 615357357331 ' 234|153 |1,310 80
2| 8|8 015337336313 234|177 1,988 125
3| 8|4 0[15|3-24 (325300, 22 |1-74 2,326 149 |
4| 8|1 6/15|3-28|3:22|308,22% | 190 | 1,210 77 ;
5(12|1 615|821 3818|299 214|190 2,58 166 ‘
6124 0 15/3:16 (313 |2:96 ' 21} | 190 | 2,388 155
7|12 |8 015|312 (309 (297 21 |19)]2,628 172
8(18|8 0|15|3-08|3 05294 203|190 2,850 188
9184 015312 309|304 213|190 | 2,496 163 :
1018 (1 615 |3-17|3-14|3-01 213 | 1-90 | 2,508 163
11118 16 0|15(313|3 11 |2:98 21§ | 1:86 | 2,825 184 !
12 {126 015|319 318 |3-02 22} | 1-95 | 2,358 153 ‘
13| 8|6 015|302 302|281 21 |196| 737 49 i
14 {208 015|311 {813 | 2:96 22} | 1-90 | 2,510 165 '
152016 015 3-05] 307|290 214 | 1-97 | 2,708 179 }
16 (20 |4 0|15 2-97|2:98 | 2-84 20} | 198 | 2,556 171 .
17 (201 615|309 (309|289 213|191 2,530, 167
18| 4|8 015|309 {812 |2:88 21} | 1'87 | 990 65
19| 4|6 0|15/3:06| 310|290 21}  1-91 22 13 1
20| 4(4 0|15]3-07 (309|285 20§|191! 1,108 73
21| 4|1 6|15|313|38-16|2:96 21} [1-85]| 706 46 |
221201 0|10|2:84 283275 213|212 909 94
23|20/3 010|282 |28 269 22 |2:09 1,385 142 l
24 (205 0103053802, 291 28} |199]1,576 157
25(20|7 0|10 |302|297 2:83 214|208 1,709 171 !
26 |18!1 0|10 2:89 | 288 2:80 21 2-12‘1,573‘ 160 1
27118138 010|289 | 288 279 21 |2:12 ! 1,459 149 1
28 (18 15 0|10 |2:89|2-882:78 21 |2-12 | 1,338 136
29 18 /7 0|10 2:89 | 288 277 21 | 212 | 1,450 148
30|12,1 0|10 2-89 | 2:88 ; 277 | 21 | 2-12 | 1,430 146
31/12,3 010|291 2‘90'2'82‘21& 2-12 | 1,484| 151
32|12 |5 010|297 | 296 | 289 | 21} | 2-12 | 1,288 131
33112 |7 010|802 | 801 287 |21} | 2:12 | 1,846] 184
3¢! 8|1 0|10|2-79 | 2:81 | 266 ' 20} | 281 | 711 74
35| 8|3 0|10|272|278 25920 |22 | 1,083 109
36| 8|5 0|10|288 {287 271 |20%|212| 868 87
37| 8|7 0|10 |2-88|287 27220} |2-12 1,206 123
38| 41 0|10(285|28¢ 2692 [2:12| 312 82
301 4|3 0(10/292|290 282|204 |208| 666 67
40 4|5 0| 5[292[29 282 [208| 372 75
41| 417 0] 5|294|292 2812|204 146 29

Average values. | 2:01 . l24‘6l4,135 4,341

: !

Up to No. 21, inclusive, the distances are measured from the north side of the
tail race; from No. 22 to No. 41, inclusive, from the south side. The current on
the south side ran very steady, and the meter was not turned from side to side by
the eddies. This difference between the currents on the two sides may probably
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be owing to the fact that the turbine rotates from north to south when the
observer stands with his face towards the east in the middle of the tail race, or
the turbine itself may have been working more steadily during the second day’s
expenments When the turbine is not runnmg at its best speed there is a great
commotion in the issuing water.

The water is let on to the turbines by three sluices. In order to check the
gaugings given in Table IL, two of the three sluices were closed at the con-
clusion of the experiments, and the difference in level between still water above
and below the sluice carefully observed. It was found to be 2 inches, the gross
head being 2:77 feet. The width between the vertical frames is 5 feet 4 inches ;
between the edges of the grooves in which the sluices run, 5 feet. The vena con-
tracta, however, lay wholly within the edges of the grooves. We must therefore
apply the co-efficients of the discharge to the outer area, which is equal to 342
square feet. The bottom of the sluice bay is protected in front by an horizontal
apron, which is only 2 inches below the level of the sluice sill.

The respective discharges of 4,341 cubic feet, ascertained by experiment, and
the calculated discharge of 4,787 cubic feet, and 5,100 cubic feet obtained on the
supposition that the construction of the turbine is theoretically perfect, and
without taking any account of internal friction, become 4,171 cubic feet, 4,600
cubic feet, and 4,900 cubic feet for a 2:77-feet head. The corresponding co-
efficients of discharge through the sluice would be *62, *68, and 72 respectively.
The first is the smallest adopted for gauging the discharge through a small orifice
in a thin plate at a distance from top, bottom, and sides, and is therefore clearly too
small in this instanee. The last, 72, cannot be looked upon as too large for com-
puting the discharge through a noteh 5 feet 4 inches by 6 feet 5 inches, towards
which the water moves along a horizontal platform almnst flush with the bottom
of the notch.

The pumping machiuery consists of four ram pumps, driven by spur and pinion
gearing, which reduces the speed of the two pump shafts. The horizontal shaft .
revolves at the same rate as the turbines, and is actuated by the turbines by
means of mitre wheels. The above experiments give the efficiency of the
pumping machinery as a whole, including the friction in the rising main, the
internal diameter of which is 2 feet. The velocity of flow in the rising main
during the experiments would never reach 10 inches a second.

For a discharge of 4,341 cubic feet the efficiency of the machinery would be
*41, of 4,787 cubic feet - 85, and of 5,100 cubic feet - 33, if we take 33, the average
of the three last experiments in Table I, as our basis. In the following
Table the first row of figures gives the co-efficient of the work done in overcoming
the friotion of the pumps, rising main, and gearing, in terms of the foot pounds
of water lifted, and the remaining columns the corresponding efficiency of the
turbines for the three diffcrent discharges.

15 <20 +30 ‘ *4() | Mean Values.

4,341 | 44 | 46 | 49 | 53 -48
4,787 | 40 | 42 | -46 | -49 -44
5,100 | 88 | +40 | -48 | -46 42

LONDON : PRINTED BY WILLIAM CLOWES AND SONS, STAMFORD STREKT
AXD CHARING CROSS.
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. Water pipes, showing the loss of .. Of the Strength of Water Pipes.

head due to change of direction by ! &e. &c. &e.
one bend of 90°,  For quick bends. | :
Hydraulics.

Manual of Hydrology, containing Hydraulic and other Tables, rivers, flow
of water, springs, wells, and percolation, tides, estuaries and tidul rivers,
rainfall, and evaporation. By NartaanieL Bearomorr, C.E. Plates. 8vo.s
cloth, 21s.

Hydraulics.
Lowell Hydraulic Experiments; being a Selection from Experiments on
Hydrauiic Motors, on the flow of Water over Weirs, in open Canals, of uniform
Rectangular Sections, and through Submerged Orifices and Diverging
Tubes, made at Lowell, Massachusetts. By James B. Francis, Civil Engi-
neer. 8econd Edition, revised and enlarged, with many New Experiments
and Additional Illustrations. Plates. 4to., cloth, £3 13s. 6d.

Hydraulic Engineering.
Prize Essay on the Encroachment of the Sea between the River Mersey and
the Bristol Chanael, being an Lssay which obtained the Prize of the National
Eistedfodd, held at Chester, 1866, By J. E. Tuomas. 8vo., sewed, 1s.

Hydraulics of Great Rivers.

Obscrvations and Surveys on the Largest Rivers of the World. By J. J.
Rivy, Civil Engineer. One volume, imperial 4to, cluth, with eight large
Plates and Charts, £2 2s.

Hydraulic Tables. .
Office Hydraulic Tubles, for the use of Engineers engaged in Watcrworks,
giving the Discharge and Dimensions of Rivers, Channels, and Pipes. By
J. NeviLLE. On a large folio sheet, ls. 4
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Engineers’ Pocket-Book.

A Pocket-Book of Useful Formuls and Memoranda for Civil and Mechanical
Engineers. By GuiLbrorp L. MoLeswosrH, Mem. Ins. C. E., Consultin g
Engineer to the Government of India for S8tate Railways. Eiglteenth Edition,
revised, with considerable additions by the Author; together with a valuable
contribution on Telegraphs, by R. S. BrovGH. 32mo., roan, Gs.
_Ditto, Interleaved with ruled Paper for Office use. 9s.
Ditto, printed on India paper, for the waistcoat pocket, Gs.

Sy~Norsis OF CONTENTS.

Surveying, Levelling, &c.

Strength and Weight of Materials.

Earthwork, Brickwork, Masonry,
Arches, &e.

Struts, Columns, Beams, and Trusses.

Flooring, Roofing, and Roof Trusses.

Water-power, Water-wheels, Turbines,
&e.

! Wind and Windmills.

Steam Navigation,
Tonnage, &oc.
Gunnery, Projectiles, &c.

Siip - Building,

Girders, Bridges, &e.
Railways and Roads.

Weights, Measures, and Money.

Trigonometry, Conic Sections, and

Hydraulic Formuls. Curves.
Canals, Sewers, Waterworks, Docks. Telegraph.
Trrigation and Breakwaters. Mensuration.

Gas, Ventilation, and Warming.
Heat, Light, Colour, and Sound.
Gravity—Centres, Forces, and Powers.

Tables of Areas and Circumference,
and Ares of Circles. .
Logarithms, Square and Cube Roots,

Millwork, Teeth of Wheels, Shafting, Powers.
&e. Reciprocals, &c.
‘Workshop Recipes. Useful Numbers.
Sundry Machinery. Differential and Integral Calculus.
Animal Power. Algebraic Signs.

Steam and the Steam Engine.

¢« Most of our readers are already acquainted with Molesworth’s pocket-book, and not a few, we
imagine, are indebted to it for valuable information, or for refreshers of the memory. The bk has
been re-arranged, the supplemental formule and tables added since the first issue, having now been
incorporated with the body of the book in their proper positions, the whole making a handy size for
the pocket. Every care has been taken to ensure correctness, both clerically and typographically,
and the book is an indispensable vade for the mechanic and the professional man.’—English
Mechanic.

Telegraphic Construction and Formulse.

Turbine.
A Practical Treatise on the Construction of Horizontal and Vertical Water-
wheels, with 11 Plates, specially designed for the use of operative mechanics.
By WrLLiaM CuLLey, Millwright and Engineer. Second Edition, revised and
enlarged. Small 4to., cloth, 12s. 6d.
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